Predlogi
Ni najdenih zadetkov.
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Ni najdenih zadetkov.
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Rezultati iskanja
Kaj so superprevodniki, kaj z njimi zmoremo že danes in kaj si lahko z njihovo izpopolnitvijo obetamo? Kličemo tudi enega od avtorjev študije, ki so jo lani uvrstili med ključne znanstvene preboje leta?
Lani je odmevala novica, da je raziskovalcem prvič v zgodovini uspelo doseči superprevodno stanje pri sobni temperaturi, resda pa pri izjemno visokem tlaku, zaradi česar odkritje za zdaj ostaja akademski dosežek brez perspektive za praktično uporabo.
Superprevodnost je lastnost snovi, da prevaja električni tok brez vsakršnih izgub. Izolatorji električnega toka ne prevajajo, običajni prevodniki pa prevajajo z izgubami, ki se kažejo kot segrevanje. Pri zelo nizkih temperaturah pa nekateri elementi in spojine izgubijo upor, zato bi v njih tok lahko tekel neskončno in na neomejene razdalje.
Kritična temperatura, pri kateri snovi izgubijo upor in postanejo superprevodne, se močno razlikuje, so pa te temperature po večini nizke. Za živo srebro je pri –269 °C, železo pa nikoli ne postane superprevodno. Znanstveniki že sto let iščejo materiale, ki bi bili superprevodni pri čim višji temperaturi. Za zdaj je treba superprevodnike ohlajati na zares nizke temperature. Takšna drastična ohlajanja predstavljajo zelo velik problem. Zato si raziskovalci že desetletja prizadevajo iskati materiale, ki bi bili superprevodni pri višjih temperaturah, ob čemer morajo po drugi strani popuščati z visokimi tlaki. Takšni materiali so izpostavljeni res neverjetnim tlakom in tudi laboratoriji, kjer jih skušajo poustvariti, niso kar tako.
"Tako visoke tlake dosežeš tako, da material stisneš med dva diamanta, ki sta dobro brušena. Problem je, če ne boste natančno pripravili eksperimenta, bodo diamanti na pol poti počili. Treba je ponavljati eksperiment. Seveda pa se ti podajajo na popolnoma neraziskana področja." – dr. Denis Arčon
Raziskovalcem je končno uspelo prebiti magično mejo nič stopinj Celzija, pri skoraj 15 stopinjah Celzija so spojino ogljika, vodika in žvepla pod izjemno visokim tlakom pripravili do tega, da je kazala lastnosti superprevodnika.
"Zelo blizu smo temu, da odkrijemo superprevodnike, ki bi se obnesli tako pri sobni temperaturi kot sobnem tlaku. In če bi jih začeli množično proizvajati, lahko govorimo o treh glavnih načinih uporabe: v medicinski diagnostiki, transportu, pri čemer bi lahko končno govorili o dejanski uporabi vlakov na magnetno lebdenje, kar bi drastično spremenilo način transporta v prihodnosti. Tretja možnost uporabe je prenos električne energije na daljavo. S prenosom energije po njih bi prihranili ogromno tako s stališča energije kot denarja." – dr. Ranga Dias
Od superprevodnikov si veliko obetajo tudi prihodnji kvantni računalniki, pospeševalniki delcev, fuzijski reaktorji in nenazadnje se med superprevodniki znajdemo vsakič, ko se odločimo za slikanje z magnetno resonanco. V resnici je material, ki ga ta hip uporabljajo v laboratoriju dr. Range Diasa, preprosta spojina ogljika, vodika in žvepla, pri čemer točna struktura materiala še vedno ni znana. Imajo superprevodnik, ki je obstojen pri 14 stopinjah Celzija, a nihče ne ve, kako točno je videti tak material.
"Zelo dobro poznamo izvorni vzorec, preden smo ga izpostavili visokemu tlaku, o samih strukturnih lastnostih superprevodnika, ki ga smo iz tega dobili, pa vemo zelo malo. Za to si ta hip prizadevamo. Problem se pojavi, ker vodika torej ne vidite zares in ne morete določiti strukture. Podobno velja za ogljik in žveplo. Žveplo se malce vidi, ogljik pa je spet lahek element in pri rentgenski difrakciji ne daje uporabnih rezultatov, iz katerih bi lahko sklepali o strukturi. To nas je oviralo pri določitvi strukture. Po drugi strani govorimo tudi o velikanskem tlaku, velikost vzorca pa je zelo majhna in tudi to zelo otežuje karakterizacijo materiala." – dr. Ranga Dias
"Mislim, da je iluzorno pričakovati, da bi tak superprevodnik pri takih pogojih lahko izkoriščali. Imajo pa drug pomen – dokažejo, da je superprevodnosti mogoče doseči ob primernih robnih pogojih in da tega kvantna mehanika ne omejuje. Naslednji korak pa je seveda, kako na neki način simulirati te visoke tlake. Razvoj bo poleg te smeri – da se bodo igrali še z drugimi elementi in plini lahkih elementov – poskusiti realizirati visoke tlake v urejenih geometrijah – temu rečejo kemijski tlak. Če bi jim s pametnim načrtovanjem materialov tukaj uspelo simulirati visoke tlake, bi bil to zelo pomemben preboj." – dr. Denis Arčon
Gosta tokratne oddaje Frekvenca X sta bila najprodornejši raziskovalec na tem področju v Sloveniji dr. Denis Arčon z inštituta Jožefa Stefana v Ljubljani in soavtor lani odmevne študije v reviji Nature dr. Ranga Dias z ameriške univerze Rochestra.
638 epizod
Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.
Kaj so superprevodniki, kaj z njimi zmoremo že danes in kaj si lahko z njihovo izpopolnitvijo obetamo? Kličemo tudi enega od avtorjev študije, ki so jo lani uvrstili med ključne znanstvene preboje leta?
Lani je odmevala novica, da je raziskovalcem prvič v zgodovini uspelo doseči superprevodno stanje pri sobni temperaturi, resda pa pri izjemno visokem tlaku, zaradi česar odkritje za zdaj ostaja akademski dosežek brez perspektive za praktično uporabo.
Superprevodnost je lastnost snovi, da prevaja električni tok brez vsakršnih izgub. Izolatorji električnega toka ne prevajajo, običajni prevodniki pa prevajajo z izgubami, ki se kažejo kot segrevanje. Pri zelo nizkih temperaturah pa nekateri elementi in spojine izgubijo upor, zato bi v njih tok lahko tekel neskončno in na neomejene razdalje.
Kritična temperatura, pri kateri snovi izgubijo upor in postanejo superprevodne, se močno razlikuje, so pa te temperature po večini nizke. Za živo srebro je pri –269 °C, železo pa nikoli ne postane superprevodno. Znanstveniki že sto let iščejo materiale, ki bi bili superprevodni pri čim višji temperaturi. Za zdaj je treba superprevodnike ohlajati na zares nizke temperature. Takšna drastična ohlajanja predstavljajo zelo velik problem. Zato si raziskovalci že desetletja prizadevajo iskati materiale, ki bi bili superprevodni pri višjih temperaturah, ob čemer morajo po drugi strani popuščati z visokimi tlaki. Takšni materiali so izpostavljeni res neverjetnim tlakom in tudi laboratoriji, kjer jih skušajo poustvariti, niso kar tako.
"Tako visoke tlake dosežeš tako, da material stisneš med dva diamanta, ki sta dobro brušena. Problem je, če ne boste natančno pripravili eksperimenta, bodo diamanti na pol poti počili. Treba je ponavljati eksperiment. Seveda pa se ti podajajo na popolnoma neraziskana področja." – dr. Denis Arčon
Raziskovalcem je končno uspelo prebiti magično mejo nič stopinj Celzija, pri skoraj 15 stopinjah Celzija so spojino ogljika, vodika in žvepla pod izjemno visokim tlakom pripravili do tega, da je kazala lastnosti superprevodnika.
"Zelo blizu smo temu, da odkrijemo superprevodnike, ki bi se obnesli tako pri sobni temperaturi kot sobnem tlaku. In če bi jih začeli množično proizvajati, lahko govorimo o treh glavnih načinih uporabe: v medicinski diagnostiki, transportu, pri čemer bi lahko končno govorili o dejanski uporabi vlakov na magnetno lebdenje, kar bi drastično spremenilo način transporta v prihodnosti. Tretja možnost uporabe je prenos električne energije na daljavo. S prenosom energije po njih bi prihranili ogromno tako s stališča energije kot denarja." – dr. Ranga Dias
Od superprevodnikov si veliko obetajo tudi prihodnji kvantni računalniki, pospeševalniki delcev, fuzijski reaktorji in nenazadnje se med superprevodniki znajdemo vsakič, ko se odločimo za slikanje z magnetno resonanco. V resnici je material, ki ga ta hip uporabljajo v laboratoriju dr. Range Diasa, preprosta spojina ogljika, vodika in žvepla, pri čemer točna struktura materiala še vedno ni znana. Imajo superprevodnik, ki je obstojen pri 14 stopinjah Celzija, a nihče ne ve, kako točno je videti tak material.
"Zelo dobro poznamo izvorni vzorec, preden smo ga izpostavili visokemu tlaku, o samih strukturnih lastnostih superprevodnika, ki ga smo iz tega dobili, pa vemo zelo malo. Za to si ta hip prizadevamo. Problem se pojavi, ker vodika torej ne vidite zares in ne morete določiti strukture. Podobno velja za ogljik in žveplo. Žveplo se malce vidi, ogljik pa je spet lahek element in pri rentgenski difrakciji ne daje uporabnih rezultatov, iz katerih bi lahko sklepali o strukturi. To nas je oviralo pri določitvi strukture. Po drugi strani govorimo tudi o velikanskem tlaku, velikost vzorca pa je zelo majhna in tudi to zelo otežuje karakterizacijo materiala." – dr. Ranga Dias
"Mislim, da je iluzorno pričakovati, da bi tak superprevodnik pri takih pogojih lahko izkoriščali. Imajo pa drug pomen – dokažejo, da je superprevodnosti mogoče doseči ob primernih robnih pogojih in da tega kvantna mehanika ne omejuje. Naslednji korak pa je seveda, kako na neki način simulirati te visoke tlake. Razvoj bo poleg te smeri – da se bodo igrali še z drugimi elementi in plini lahkih elementov – poskusiti realizirati visoke tlake v urejenih geometrijah – temu rečejo kemijski tlak. Če bi jim s pametnim načrtovanjem materialov tukaj uspelo simulirati visoke tlake, bi bil to zelo pomemben preboj." – dr. Denis Arčon
Gosta tokratne oddaje Frekvenca X sta bila najprodornejši raziskovalec na tem področju v Sloveniji dr. Denis Arčon z inštituta Jožefa Stefana v Ljubljani in soavtor lani odmevne študije v reviji Nature dr. Ranga Dias z ameriške univerze Rochestra.
Josef Ressel je bil morda eden zadnjih res širokih mislecev. Po osnovni izobrazbi gozdar, je pomemben pečat pustil na zelo različnih področjih. Tehnike in inovacij se je loteval na način Leonarda Da Vincija. Najbolj je znan po izumu ladijskega vijaka, pomembna je njegova vloga pri pogozdovanju Krasa, bil je hidrotehnični strokovnjak. V prvem obdobju industrijske revolucije se je ukvarjal z novimi materiali in tehnologijami, zlasti pa ga je pritegnilo raziskovanje možnosti tehnoloških izboljšav v prometu in energetiki. Med zanimivejše ideje lahko štejemo tudi brezsmradno stranišče in lokomobil. Deloval je na Dolenjskem, na Krasu, v Trstu in Ljubljani, kjer je umrl leta 1857. Josef Ressel je bil češko-nemških korenin, v Ljubljani ima svojo cesto in spomenik, v Šentjerneju so mu posvetili metuljček in penino, načrtujejo tudi Resslov most. Kakšna je njegova zapuščina?
Kdo je bil Jožef Stefan? Čeprav se nam zdi, da ga vsi po malem poznamo, saj je po njem poimenovan največji znanstveni inštitut v Sloveniji, pa o njem v resnici vemo zelo malo. Znano je, da je bil otrok revnih in nepismenih staršev, s svojo nadarjenostjo in osredotočenostjo pa je kmalu dokazal, da je velik učenjak, postal je tudi eden vodilnih znanstvenikov v avstrijskem cesarstvu. Fizika je bila njegovo življenje - dobesedno, veliko dni je prespal kar na inštitutu, ki ga je vodil, ker je bil tako zelo predan delu. Poročil se je šele pri 56 letih in v sreči v dvoje je užival le kakšno leto, saj je kmalu po poroki umrl zaradi možganske kapi. Kdo je bil torej ta veliki fizik, edini znanstvenik slovenskega rodu, po katerem je poimenovan tudi fizikalni Stefan-Boltzmannov zakon?
Njeno življenje ni bilo lahko. Izgubila je edinega otroka, podpirala v vojni poškodovanega moža in kariero gradila v moškem akademskem svetu ter v času najostrejše stalinizacije.
Ogrevanje pred novo sezono Frekvence X začenjamo z zavojem v preteklost, k znanstvenikom, ki so se rodili ali delovali na slovenskih tleh in so splošni javnosti manj znani. Kot prvemu se bomo posvetili profesorju Milanu Vidmarju, ki je zaznamoval razvoj slovenske elektrotehnike in prva leta ljubljanske Univerze. O profesorju Vidmarju kot pionirskem elektrotehniku, vrhunskemu šahovskemu velemojstru in velikem borcu, ki je vplival na družbeni in gospodarski razvoj slovenskega ozemlja v svojem času, se je Jan Grilc pogovarjali s tremi gosti, ki jim je profesor Vidmar vsakemu po svoje zaznamoval življenjsko pot. Kdo je bil torej človek, ki je odločilno vplival na razvoj Univerze v zgodnjih letih, spoznal Nikolo Teslo in odigral legendarne partije z največjimi velemojstri šaha v svojem času? Gosti: - prof. dr. Rafael Cajhen, predavatelj, mentor in raziskovalec na Fakulteti za elektrotehniko - prof. dr. Maks Babuder, dolgoletni direktor Elektrotehniškega inštituta Milan Vidmar - prof. dr. Ivan Bratko, Fakulteta za računalništvo in informatiko, šahovski mojstrski kandidat
Delaš, se trudiš, da boš pred dopustom storil vse, kar moraš, končno odideš iz pisarne, ugasneš luč, odzdraviš kolegom in v glavi snuješ načrte za dopust. Pakiraš, se voziš na morje, potem pa kar naenkrat bolečine v mišicah, smrkanje, morda celo vročina. Znano? Marsikomu verjetno res. Preddopustniška Frekvenca X se torej odpravlja na teren tako imenovane bolezni prostočasja. Zakaj se zgodi, da pogosto zbolimo ravno takrat, ko naj bi se imeli fino. Torej - na dopustu.
Predzadnja Frekvenca X v letošnji sezoni se tik pred poletno vročino poglablja v namakalne sisteme. Prav ti so bili osnova, na kateri so med drugim zrasle antične civilizacije, od Kitajske do Egipta, hkrati pa so tudi danes marsikje osnova kmetijstva. V Grčiji, Italiji in Španiji na primer namakajo skoraj polovico kmetijskih površin, Slovenija pa le en odstotek. Kakšen je razlog, kako je z vodo in še marsikaj zanimivega, je o namakalnih sistemih izvedela Maja Ratej.
Po siloviti eksploziji in porušitvi jezu Nova Kahovka, ki je v južni Ukrajini na reki Dneper zadrževal 19 kubičnih kilometrov ali za skoraj pet Tržaških zalivov vode, so obsežni deli pokrajine še vedno poplavljeni, več deset tisoč ljudi pa razseljenih. V tokratni Frekvenci X pri strokovnjakih za visoke vodne pregrade preverjamo, kako zahteven gradbeni podvig so jezovi in katere porušitve jezov so odmevale v zgodovini. Posvetimo pa se tudi nekaterim največjim orjakom med jezovi na svetu.
Uživanje na glasbenih koncertih ima svoje čare, občutka avtentične interakcije ne more nadomestiti nobena tehnologija. Živi glasbeni performansi nas močno pritegnejo, tako pri nastopajočih kot pri publiki sprožijo posebne občutke. Kaj se takrat dogaja v naših možganih, kako na nas vpliva učinek množice, kakšni muzikološki momenti nas prepričajo in zakaj je ubiranje “izštekanih” poti tako privlačno.
V prvi junijski Frekvenci X se oziramo v maj, ko je odmevalo rojstvo otroka, ki nosi DNK treh oseb. Pri dveh pomembnih svetovnih študijah so sodelovali tudi slovenski znanstveniki – v prvi o proteinu FUS, ki je eden od ključnih dejavnikov za nastanek frontotemporalne demence, v drugi pa o tem, da lahko ženske prekinejo hormonsko terapijo pri zdravljenju raka dojk z namenom zanositve in po porodu spet nadaljujejo z njo. Spoznamo tudi aktualnega mentorja leta, gostujoča urednica in gostja pa je tokrat dr. Saša Novak, komunikatorica znanosti 2022 in gonilno srce projekta Znanost na cesti, ki že deset let povezuje javnost z znanostjo.
Celoten posnetek okrogle mize na Filozofski fakulteti v Ljubljani v organizaciji Znanosti na cesti in Frekvence X.
Povzetek okrogle mize na Filozofski fakulteti v Ljubljani v organizaciji Znanosti na cesti in Frekvence X. ChatGPT je kot jezikovni model že osvojil jezikovne bravure človeškega sporazumevanja in prebral nesluteno količino vsega, kar se skriva na svetovnem spletu, a strokovnjake vse bolj bega, simptom česa je brbotanje umetne inteligence v globinah. Ne gre le za vprašanja, katere poklice in dejavnosti vse bo umetna inteligenca v prihodnosti nadomestila, nadgradila, olajšala ali izpodrinila ter kako nam bo v pomoč na skoraj vseh področjih, pač pa za negotovost, česa vsega bo še sposobna, a se nam o tem danes še sanja ne. Kako bo zakoličila prihodnost in kako se bomo v novih okoliščinah znašli mi, ljudje? Kaj bo z vrednotami modrosti, učenja in intelektualnega napredka, v kakšno valuto se bo prelevilo znanje in kako se bo na to pripravil izobraževalni sistem?
Ste vedeli, da so lahko geni zelo zgovoren vodnik po davni zgodovini? No, vsaj postali so, zdaj, ko jih zmoremo neznansko hitro in učinkovito odčitavati. V samo nekaj letih so raziskovalci na tem področju prečesali 20 000 pradavnih genomov in odkrili marsikaj presenetljivega o naši davni preteklosti.
Vloga mrtvih v življenju posameznikov v sodobni družbi in Povojne tranzicije v perspektivi spola – primer severovzhodnega jadranskega prostora sta dve raziskovalni temi, ki so ju izbrali pri prestižnem projektu Evropskega raziskovalnega sveta ERC. Omenjena glavna evropska organizacija s financiranjem pomaga vrhunskim znanstvenikom pri raziskovanju določene teme, ki v znanstvenem svetu še ni bila obravnavana. Za svojo originalnost sta bili nagrajeni profesorica Mirjam Mencej z oddelka za etnologijo in kulturno antropologijo in profesorica Marta Verginella z oddelka za zgodovino, obe delujeta na ljubljanski filozofski fakulteti. Govorita o tem, kakšen raziskovalni zagon jima je dal projekt, kaj pravzaprav raziskujeta in kako težko je pridobiti financiranje projekta ERC.
V tretjem delu serije Kmetijstvo prihodnosti se prepričamo, da krave in roboti zelo dobro sobivajo in sodelujejo. V moderni živinoreji je raba robotskih sesalnikov gnoja in molznih robotov zelo napredovala, živali se bolje počutijo, manjši pa je tudi okoljski vpliv. Glede živinoreje ostaja odprtih več vprašanj: kako močno v resnici reja živali obremenjuje okolje, kaj bi lahko dosegli s spremembo prehranjevalnih navad in ali prihodnost prinaša umetno meso? Ob koncu tudi izdelamo zrezek s 3D-tiskanjem.
V drugem delu serije Kmetijstvo prihodnosti se sprašujemo, kako se spreminjajo načini pridelovanja zelenjave. Sprehodimo se po enem najmodernejših rastlinjakov v Sloveniji, kjer rast desettisočev glav solat nadzoruje umetna inteligenca in kjer so pogoji za rast natančno določeni. Razmišljamo o tem, kje je smiselno postavljati rastlinjake in kako moramo spreminjati bolj klasične postopke talne rasti, hkrati pa ugotavljamo, ali so urbane vertikalne farme le modna muha ali tehnologija prihodnosti. Poskusimo pa tudi vesoljski paradižnik.
Začenjamo z novo serijo, ki smo jo poimenovali kar Kmetijstvo prihodnosti. Na področju pridelave hrane nas čaka mnogo izzivov - hitra rast svetovnega prebivalstva pomeni vse večje potrebe po hrani, hkrati pa podnebne spremembe in z njimi povezani vremenski ekstremi vse bolj otežujejo pridelavo.
V marčevskem znanstvenem pregledu je v središču naše pozornosti tema, ki v negotovost postavlja številne znanstvenike. Tehnologije umetne inteligence presenečajo s svojimi zmogljivostmi. Program ChatGPT je zmožen na podlagi uporabnikovega vprašanja ali trditve avtomatsko generirati smiseln odgovor. Znanje, ki si ga je program nabral prek strojnega učenja, pretvarja v preproste odgovore, daljše tekste, eseje ali celo povzetke znanstvenih tekstov. Preverimo tudi izplen konference o vodi, ki so jo po dolgem času organizirali Združeni narodi. Spoznamo prejemnike nekaterih nagrad, ki so jih v znanosti podelili v prvem pomladnem mesecu, in rezultate, ki jih je pokazala nova analiza odpadnih voda pri nas. Na tujem pogledujemo k japonskim znanstvenikom in odkritju na asteroidu Ryugu in preverjamo, kako lahko streznimo pijane miši.
Že vrsto let smo priča spreminjanju središč mest, ki se predvsem kaže v načrtnem spreminjanju prebivalstva središč iz nižjega v višje sloje. To se načrtno dogaja v Ljubljani, temu pa se ne morejo izogniti niti obalna mesta. Tam gre predvsem za prilagajanje ponudbe izključno turistom ali pa celo, da se stanovanja v historičnih delih mest prodajajo tako imenovanim vikendašem, kar pomeni, da je poleti predvsem na obalnih predelih velika obremenitev, pozimi pa so to mesta duhov. Eno takšnih primerov je mesto Piran - na vseprisotnost turistične gentrifikacije so nas opozorili dijaki gimnazije z italijanskim učnim jezikom Antonia Seme v Portorožu, zato se je Frekvenca X tokrat odpravila na terensko debato na Obalo.
V sodelovanju z oddajo Možgani na dlani raziskujemo zakaj in kako kletvice nastanejo, kaj se dogaja v možganih, kakšna je moč preklinjanja, zakaj je lahko tudi koristno, pa tudi kdaj so kletvice posledica bolezenskega stanja.
Hitro se "prilepijo" na naše možgane in že kot otrokom nam dajo vedeti, da preklinjanje res ni lepo! Psovke, zmerljivke in kletvice vseh vrst imajo močno vlogo v družbi, lahko izražajo različna emotivna stanja in seveda lahko globoko ranijo in prizadanejo. Nam lahko kletvice tudi pomagajo? Kakšen je njihov analgetski učinek, zakaj nosijo v sebi takšno moč in kaj se z možgani dogaja takrat, ko preklinjamo, ne da bi želeli? V posluh ponujamo prav posebno epizodo oddaje Možgani na dlani, ki sta jo ob Tednu možganov pripravila Luka Hvalc (Val202) in Mojca Delač (Prvi). Frekvenca X in Možgani na dlani družno o besedah, ki niso samo odraz dandanašnje družbe. Je bilo v Trubarjevih časih kaj drugače? Preverimo!
Neveljaven email naslov