Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Kvantna prihodnost 2/3: Teleportacija? Tudi to je mogoče!

28.01.2021


O neslutenih novih možnostih za razvoj materialov in zdravil, miniaturnih kvantnih merilnih napravah in le navidezno magični teleportaciji!

Človeštvo je začelo korakati proti svetu, ki ga bodo opisovale in spreminjale drugačne tehnologije. Drugačne zato, ker delujejo po drugačnih načelih kot dosedanje klasične tehnologije in ker posegajo na področja, ki jih do zdaj nismo niti slutili. Tu in tam delujejo, kot da bolj spadajo na področje magije kot znanosti. Pa vendar je magičnost kvantnih tehnologij le navidezna, saj so te že trdno zasidrane v naš resnični svet.

V drugem delu serije Kvantna prihodnost smo s strokovnjaki razmišljali o kvantnih simulacijah, ki nam bodo omogočile izjemne nove možnosti pri razvoju materialov in zdravil, ter o kvantnih merilnih napravah, ki bodo ne le precej manjše od klasičnih naprav, ampak bodo ponujale tudi veliko večjo natančnost. V studiu sta nas tako kot v prvem delu obiskala strokovna sodelavca z Inštituta Jožefa Stefana dr. Peter Jeglič in dr. Rok Žitko, ki se v svojem raziskovalnem delu ukvarjata s kvantnimi tehnologijami.

Pravzaprav bi lahko rekli, da sta se do radijskega studia teleportirala, saj je bila začetna tema tokratne epizode prav teleportacija. Ta velikokrat buri našo domišljijo, a običajno ob podobnih mislih le zamahnemo z roko in si prigovarjamo, da to pač ni mogoče. A kot pove dekan Fakultete za matematiko in fiziko dr. Anton Ramšak, temu ni tako.

"Danes je že mogoče teleportirati snov na najnižjem nivoju. Seveda je vprašanje, ali bomo kdaj napredovali do molekul, predmetov ali živih stvari, vendar teoretično to ni nemogoče." - dr. Anton Ramšak

Prvi poskus s teleportacijo elektronov in fotonov so izvedli leta 2007 na Dunaju, pri čemer je sodeloval tudi eden izmed naših sogovornikov. Dr. Reiner Kaltenbaek, takrat raziskovalec na dunajski univerzi, danes pa predavatelj na ljubljanski Fakulteti za matematiko in fiziko, pravi, da so takrat fotone teleportirali čez reko Donavo, kar je predstavljajo razdaljo 600 metrov. Poskus je uspel.

"Od takrat naprej je bilo na tem področju doseženih že nekaj novih mejnikov. Kitajci so pred nekaj leti izstrelili satelit, s katerim so uspeli dokazati, da lahko prepletene delce razporedimo tudi med dvema zelo oddaljenima lokacijama s pomočjo satelitske povezave. Uspelo jim je pokazati, da lahko to prepletenost uporabijo tudi za teleportacijo." - Dr. Reiner Kaltenbaek

Razen teleportacije pa so seveda zanimiva tudi druga področja kvantnih tehnologij, na primer simulacija. Ta nam je v pomoč predvsem, kadar želimo izdelati nov material, ki bo na nekam področju ali na nek način boljši od obstoječega, denimo bolj vzdržljiv, bolj prilagojen na ekstremne vremenske pogoje ali lažje obnovljiv. Tega se lahko lotimo po klasični poti v laboratoriju, ki ima sicer precej pomanjkljivosti. Postopek je namreč zahteven, dolgotrajen, rezultati pa so nepredvidljivi. Druga pot je računanje, a tudi ta ni optimalna, saj so ti računi po besedah dr. Ramšaka izjemno zahtevni. "Narava je tako kompleksna, sestavnih delov v molekulah pa je toliko, da realističnih materialov enostavno ni mogoče preračunati v kratkem času." S kvantnimi računalniki, ki so bili glavni predmet debate prejšnjega dela serije Frekvence X, bi šlo po prepričanjih stroke veliko hitreje.

Kvantne tehnologije pa bodo omogočile tudi povsem drugačno zaznavanje tega sveta. Prinesle bodo precej bolj natančno opazovanje in preučevanje našega okolja. S tem področjem se ukvarja naslednji steber kvantnih tehnologij, ki ga sestavljata kvantna senzorika in meroslovje. Kot poudarjata strokovna sodelavca, si strokovnjaki želijo, da bi takšne naprave oz. senzorji delali bolje od najboljših obstoječih klasičnih senzorjev po vsaj enem izmed naslednjih kriterijev: velikost, občutljivost, natančnost, delovno okolje, specifičnost, ali pa časovni interval za rekalibracijo. Nekaj takih naprav je že na trgu, na primer atomske ure ali atomski gravimetri, večino pa zaenkrat preizkušajo v laboratoriju.

Dr. Samo Beguš, član Laboratorija za metrologijo in kakovost na Fakulteti za elektrotehniko, izpostavlja eno izmed prednosti takšnih naprav. Optične magnetometre uporabljajo za ugotavljanje tega, kakšni materiali in rudnine se nahajajo pod zemeljskim površjem na nekem območju.

"Če vzamemo magnetometer na letalo ali helikopter in preletavamo neko območje, lahko ugotovimo, kje se nahaja kakšna rudnina, ki vpliva na magnetno polje". - dr. Samo Beguš

Druge zelo zanimive primere uporabe takih merilcev magnetnega polja najdemo v medicini. Kvantni senzorji bodo namreč omogočili tudi boljše poznavanje za nas ene največjih skrivnosti vesolja, delovanja človeških možganov. Strokovni sodelavec dr. Rok Žitko opozori še na eno zelo pomembno prednost, ki bi jo kvantna senzorika lahko ponudila.

"Po prvih ocenah bi lahko z interferometri, ki sicer merijo hitrost vrtenja Zemlje ali spremembe v gravitacijskem polju, zaznavali tudi potrese in tektonske premike. Ker se sprememba gravitacijskega polja širi s svetlobno hitrostjo, potresni valovi pa imajo tipično hitrost nekaj km/s, bi tako imeli pri potresu, oddaljenem 100 km, nekaj deset sekund časa, da na primer ugasnemo jedrsko elektrarno." – dr. Rok Žitko

Gosti druge oddaje: Dr. Philippe Bouyer (CNRS), dr. Rainer Kaltenbaek (FMF), dr. Samo Beguš (FE), Jaka Perovšek (Univerza v Bremnu), dr. Anton Ramšak (FMF)

Povezave: PRVI del serije, DRUGI del serije, TRETJI del serije


Frekvenca X

669 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Kvantna prihodnost 2/3: Teleportacija? Tudi to je mogoče!

28.01.2021


O neslutenih novih možnostih za razvoj materialov in zdravil, miniaturnih kvantnih merilnih napravah in le navidezno magični teleportaciji!

Človeštvo je začelo korakati proti svetu, ki ga bodo opisovale in spreminjale drugačne tehnologije. Drugačne zato, ker delujejo po drugačnih načelih kot dosedanje klasične tehnologije in ker posegajo na področja, ki jih do zdaj nismo niti slutili. Tu in tam delujejo, kot da bolj spadajo na področje magije kot znanosti. Pa vendar je magičnost kvantnih tehnologij le navidezna, saj so te že trdno zasidrane v naš resnični svet.

V drugem delu serije Kvantna prihodnost smo s strokovnjaki razmišljali o kvantnih simulacijah, ki nam bodo omogočile izjemne nove možnosti pri razvoju materialov in zdravil, ter o kvantnih merilnih napravah, ki bodo ne le precej manjše od klasičnih naprav, ampak bodo ponujale tudi veliko večjo natančnost. V studiu sta nas tako kot v prvem delu obiskala strokovna sodelavca z Inštituta Jožefa Stefana dr. Peter Jeglič in dr. Rok Žitko, ki se v svojem raziskovalnem delu ukvarjata s kvantnimi tehnologijami.

Pravzaprav bi lahko rekli, da sta se do radijskega studia teleportirala, saj je bila začetna tema tokratne epizode prav teleportacija. Ta velikokrat buri našo domišljijo, a običajno ob podobnih mislih le zamahnemo z roko in si prigovarjamo, da to pač ni mogoče. A kot pove dekan Fakultete za matematiko in fiziko dr. Anton Ramšak, temu ni tako.

"Danes je že mogoče teleportirati snov na najnižjem nivoju. Seveda je vprašanje, ali bomo kdaj napredovali do molekul, predmetov ali živih stvari, vendar teoretično to ni nemogoče." - dr. Anton Ramšak

Prvi poskus s teleportacijo elektronov in fotonov so izvedli leta 2007 na Dunaju, pri čemer je sodeloval tudi eden izmed naših sogovornikov. Dr. Reiner Kaltenbaek, takrat raziskovalec na dunajski univerzi, danes pa predavatelj na ljubljanski Fakulteti za matematiko in fiziko, pravi, da so takrat fotone teleportirali čez reko Donavo, kar je predstavljajo razdaljo 600 metrov. Poskus je uspel.

"Od takrat naprej je bilo na tem področju doseženih že nekaj novih mejnikov. Kitajci so pred nekaj leti izstrelili satelit, s katerim so uspeli dokazati, da lahko prepletene delce razporedimo tudi med dvema zelo oddaljenima lokacijama s pomočjo satelitske povezave. Uspelo jim je pokazati, da lahko to prepletenost uporabijo tudi za teleportacijo." - Dr. Reiner Kaltenbaek

Razen teleportacije pa so seveda zanimiva tudi druga področja kvantnih tehnologij, na primer simulacija. Ta nam je v pomoč predvsem, kadar želimo izdelati nov material, ki bo na nekam področju ali na nek način boljši od obstoječega, denimo bolj vzdržljiv, bolj prilagojen na ekstremne vremenske pogoje ali lažje obnovljiv. Tega se lahko lotimo po klasični poti v laboratoriju, ki ima sicer precej pomanjkljivosti. Postopek je namreč zahteven, dolgotrajen, rezultati pa so nepredvidljivi. Druga pot je računanje, a tudi ta ni optimalna, saj so ti računi po besedah dr. Ramšaka izjemno zahtevni. "Narava je tako kompleksna, sestavnih delov v molekulah pa je toliko, da realističnih materialov enostavno ni mogoče preračunati v kratkem času." S kvantnimi računalniki, ki so bili glavni predmet debate prejšnjega dela serije Frekvence X, bi šlo po prepričanjih stroke veliko hitreje.

Kvantne tehnologije pa bodo omogočile tudi povsem drugačno zaznavanje tega sveta. Prinesle bodo precej bolj natančno opazovanje in preučevanje našega okolja. S tem področjem se ukvarja naslednji steber kvantnih tehnologij, ki ga sestavljata kvantna senzorika in meroslovje. Kot poudarjata strokovna sodelavca, si strokovnjaki želijo, da bi takšne naprave oz. senzorji delali bolje od najboljših obstoječih klasičnih senzorjev po vsaj enem izmed naslednjih kriterijev: velikost, občutljivost, natančnost, delovno okolje, specifičnost, ali pa časovni interval za rekalibracijo. Nekaj takih naprav je že na trgu, na primer atomske ure ali atomski gravimetri, večino pa zaenkrat preizkušajo v laboratoriju.

Dr. Samo Beguš, član Laboratorija za metrologijo in kakovost na Fakulteti za elektrotehniko, izpostavlja eno izmed prednosti takšnih naprav. Optične magnetometre uporabljajo za ugotavljanje tega, kakšni materiali in rudnine se nahajajo pod zemeljskim površjem na nekem območju.

"Če vzamemo magnetometer na letalo ali helikopter in preletavamo neko območje, lahko ugotovimo, kje se nahaja kakšna rudnina, ki vpliva na magnetno polje". - dr. Samo Beguš

Druge zelo zanimive primere uporabe takih merilcev magnetnega polja najdemo v medicini. Kvantni senzorji bodo namreč omogočili tudi boljše poznavanje za nas ene največjih skrivnosti vesolja, delovanja človeških možganov. Strokovni sodelavec dr. Rok Žitko opozori še na eno zelo pomembno prednost, ki bi jo kvantna senzorika lahko ponudila.

"Po prvih ocenah bi lahko z interferometri, ki sicer merijo hitrost vrtenja Zemlje ali spremembe v gravitacijskem polju, zaznavali tudi potrese in tektonske premike. Ker se sprememba gravitacijskega polja širi s svetlobno hitrostjo, potresni valovi pa imajo tipično hitrost nekaj km/s, bi tako imeli pri potresu, oddaljenem 100 km, nekaj deset sekund časa, da na primer ugasnemo jedrsko elektrarno." – dr. Rok Žitko

Gosti druge oddaje: Dr. Philippe Bouyer (CNRS), dr. Rainer Kaltenbaek (FMF), dr. Samo Beguš (FE), Jaka Perovšek (Univerza v Bremnu), dr. Anton Ramšak (FMF)

Povezave: PRVI del serije, DRUGI del serije, TRETJI del serije


20.07.2022

200 let od rojstva 'očeta genetike' Gregorja Mendla

20. julija mineva natanko 200 let od rojstva češkega meniha Gregorja Mendla, ki slovi kot oče genetike. Obletnica rojstva tega učenjaka, ki se je v zgodovino vpisal s križanjem graha, je lahko priložnost za to, da se na kratko ozremo na pot, ki jo je v teh dveh stoletjih prehodila genetika, in preletimo temeljne izzive, pred katerimi je danes. Maja Ratej se je o tem pogovarjala z genetikom dr. Alešem Mavrom s Kliničnega inštituta za medicinsko genetiko UKC Ljubljana. Začela sta s komentarjem dela Gregorja Mendla. Kaj je bil ta njegov revolucionarni uvid, zaradi katerega mu pravimo oče genetike?


07.07.2022

Frank Close o izjemnem popotovanju do odkritja Higgsovega bozona

Pred natanko desetletjem so iz raziskovalnega središča CERN v bližini Ženeve sporočili, da so se dokopali do enega največjih prebojev v fiziki sodobnega časa. Odkriti Higgsov bozon je bil edini še manjkajoči košček standardnega modela fizike osnovnih delcev. Veliki hadronski trkalnik, gigantska naprava dolžine ljubljanske obvoznice, je po skoraj štirih letih delovanja upravičil pričakovanja in potrdil, kar so fiziki predvidevali skoraj pet desetletij.


23.06.2022

Babilonski stolp vsega živega

Danes je 23. junij, na ta dan je v koledarju kresna noč in po ljudskem verovanju naj bi bilo prav tedaj mogoče razumeti govorico živali, ob pogoju, da ti v čevelj pade praprotno seme. A da bi slišali živalsko govorico, ne potrebujemo ne kresne noči ne praprotnega semena, ampak le malo znanosti in domišljije. V svetu okoli nas je pravi vrvež – na vseh mogočih zvočnih frekvencah, v elektromagnetnih silnicah, barvnih spektrih, vibracijskih ritmih, kemičnih pošiljkah … Ste za to, da splezamo na babilonski stolp vsega živega? To epizodo sta pripravila Maja Ratej in strokovni sodelavec dr. Matjaž Gregorič. Sogovorniki: - Urša Fležar, Biotehniška fakulteta - Gordana Glavan, Biotehniška fakulteta - Ines Mandič Mulec, Biotehniška fakulteta - Jernej Polajnar, Nacionalni inštitut za biologijo - Barbara Zakšek, Center za kartografijo flore in favne - biologinja in operna pevka Petra Vrh Vrezec


08.06.2022

Ključni znanstveni preboji v zadnjih 50 letih

Vesolje, telekomunikacije, genetika, medicina, podnebna znanost. Kateri so največji preboji, ki so zaznamovali ta znanstvena področja? Analiziramo največje mejnike na področju znanosti v zadnjih 50 letih.


03.06.2022

2022: V časovno kapsulo bi dali umazano prst, ledeniško vrtino, semena in vodo

Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.


02.06.2022

Carlo Rovelli: Čas kot tak v resnici ne obstaja

Fizik svetovnega slovesa Carlo Rovelli o fiziki in filozofiji časa: "Čas kot tak v resnici ne obstaja. Čas je prostor, ki ga odpirata naš spomin in pričakovanje".


02.06.2022

Pogovor na OŠ Brinje

Frekvenca X se je v času praznovanja 50-letnice Vala 202 podala tudi med šolarje in kot vreče zlata med njimi delila šolske, profesorske, življenjske in raziskovalne izkušnje naših strokovnjakov. Prijetno, sicer hladno jutro je namreč na OŠ Brinje v Grosupljem zaznamoval pogovor z imenitnimi gosti, ki so se z veseljem pomešali med mladino. Dr. Alojz Kodre, dr. Matevž Dular in dr. Anja Petković Komel so osnovnošolcem prinesli in tudi prenesli svojo strast do raziskovanja, do eksperimentiranja in tudi reševanja ugank.


02.06.2022

Eksperimentiranje v nočni omarici, reševanje ugank in "umazana znanost"

Frekvenca X se je pomešala med osnovnošolce - svoje raziskovalne, šolske, življenjske izkušnje so z mladimi radovedneži delili dr. Alojz Kodre, dr. Matevž Dular in dr. Anja Petković Komel.


02.06.2022

Znanstveniki čez mejo nismo 'švercali' kavbojk in čevljev, ampak kemikalije

Kako se je znanost delala pred 50. leti? Na Inštitutu Jožef Stefan in Kemijskem inštitutu smo obiskali laboratorije in tedaj aktivne raziskovalce ter preverili, kako se je znanost obnašala na terenu Biotehniške fakultete.


26.05.2022

Zajemanje in shranjevanje ogljika, 3. del: Iskanje ogljikove poti v prihodnost

V Frekvenci X še zadnji, 3. del serije o zajemanju in shranjevanju ogljika, torej o sklopu tehnologij, ki bodo eden izmed pomembnih delov v mozaiku boja proti segrevanju ozračja.


19.05.2022

Zajemanje in shranjevanje ogljika, 2. del: Globoko pod zemeljskim površjem

V Frekvenci X nadaljujemo serijo oddaj o zajemanju in shranjevanju ogljika, sklopu tehnologij, ki bodo eden izmed pomembnih delov v mozaiku boja proti segrevanju ozračja.


12.05.2022

Zajemanje in shranjevanje ogljika, 1. del: Na ladje namesto v ozračje

V 1. delu serije Frekvence X o zajemanju in shranjevanju ogljika se odpravljamo v sežigalnico odpadkov, ki ima rešitev za svoje ogljične izpuste.


05.05.2022

Odkritje izpred sto let, ki prehranjuje svet

Na mineralnih gnojilih sloni slaba polovica prebivalstva na svetu, vse skupaj pa se je začelo s postopkom čudno zvenečega imena, pod katerega se podpisujeta Nobelovca Fritz Haber in Carl Bosch.


28.04.2022

Pogled proti vesolju

Kako je vojna v Ukrajini vplivala na raziskovanje vesolja, o odkritju najbolj oddaljene zvezde doslej, kako deluje vesoljski teleskop James Webb, o ERC projektu in o tem, kaj prinaša mesec maj.


21.04.2022

Posluh za znanost pogrešamo že leta

Kaj so ključna vprašanja, ki bi jih bilo treba zastaviti prihodnjim oblikovalcem politik v Sloveniji v zvezi z znanostjo pri nas?


14.04.2022

Najuspešnejša različica koronavirusa

Kako uspešno bi se različice s hitrejšo prenosljivostjo ali izogibanjem imunski zaščiti ali kombinaciji obojega, lahko razširile po populaciji? Pogovor z dr. Mary Bushman s harvardske šole za javno zdravje.


06.04.2022

Za ženske v znanosti: Katja Klinar, Tina Kegl in Eva Turk

Tri mlade znanstvenice predstavljajo svoje raziskovalne izzive, konkretne projekte, komentirajo razmere na področju znanosti v Sloveniji in svetu. Kje se vidijo v prihodnosti?


31.03.2022

Če človeku daš oblast, ga bo ta praviloma pokvarila

Vsak posameznik je sposoben zlih dejanj, če ga k temu spodbujajo okoliščine.


24.03.2022

Razumevanje podatkov in dobra komunikacija sta ključna

Intervju s statistikom Davidom Spiegelhalterjem z Univerze v Cambridgeu.


17.03.2022

Od glave do pet: sinhronizacija možganov in telesa

Kako se sinhronizirajo naši možgani z možgani drugih? Kako in kdaj smo usklajeni?


Stran 5 od 34
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov