Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Bo elektrika poganjala tudi potniška letala? Morda pa res

07.01.2016

Področje razvoja električnih vozil in baterijskih sistemov zanje je na vrhuncu. Tudi Slovenci smo na področju razvoja tovrstnih akumulatorjev v svetovni raziskovalni špici. Baterijske sisteme prihodnosti in to, ali bodo lahko kmalu poganjali tudi potniška letala, razkrivamo ta četrtek po 11.45 v valovski oddaji Frekvenca X. Gosta: Dr. Robert Dominko, raziskovalec na Kemijskem inštitutu in Haresh Kamath, Electric Power Research Insitut, ameriška neprofitna R&D organizacija.

Raziskovalci Kemijskega inštituta so se podpisali pod prvo objavo v reviji Science

Številni se strinjajo, da bo med vsemi nujnimi pogoji za razvoj električnih vozil, ključno vlogo odigral predvsem napredek na področju baterijskih sistemov. Potem ko so zgodnji entuziasti še privolili v višje cene in krajšo obstojnost, bo vstop na širši trg zahteval več. Pa lahko to pričakujemo v kratkem?

“Smo sredi revolucije, zlasti na področju razvoja materialov za baterijske sisteme prihodnosti. Na to vplivajo tudi zelo veliki denarni vložki, ki jih temu področju namenjajo po vsem svetu. Obetamo si nove revolucionarne izboljšave, in to že v prihodnjih nekaj letih.”

To je Haresh Kamath z ameriškega neodvisnega in nevladnega  inštituta za raziskovanje električne energije, EPRI. Tudi Slovenci smo na področju razvoja akumulatorjev za električna vozila v svetovnem raziskovalnem vrhu.

Kot vemo, naša prihodnost s fosilnimi gorivi ni svetla. Človeštvo bo moralo najti nek nov način, kako ekonomično in učinkovito izrabljati energijo. Baterija je pač eden izmed tistih potencialov, ki je sposobna shranjevati vso energijo iz obnovljivih virov in zato se širom po svetu vlaga ogromno sredstev v ta področja, kar pomeni zelo veliko konkurenco in koncentracijo znanja.”

Pravi dr. Robert Dominko, ki se skupaj z ekipo svojih raziskovalcev in francoskimi sodelavci podpisuje pod objavo v prestižni reviji Science. Gre za prvo objavo kateregakoli raziskovalca s tega inštituta v tej reviji, poslušalci pa ste to ta teden nagradili tudi z izborom za Ime tedna.

Celotnemu pogovoru z dr. Dominkom lahko prisluhnete spodaj.

INTERVJU SI LAHKO PREBERETE TUDI SPODAJ:

Prof. Robert Dominko, nam lahko predstavite laboratorij, ki ga vodite?

Ko govorimo o sodobnih baterijskih sistemih, imamo v mislih nove sisteme z baterijami, ki imajo povečano energijsko gostoto. Preprosteje rečeno, to pomeni, da imamo v enaki prostornini in pri enaki masi shranjene veliko več energije. Delo v laboratoriju se deli na tri osnovna področja: eno je nadaljevanje dela z litijskoionskimi akumulatorji. Pri tem iščemo nove možnosti, kako povečati količino energije, shranjene v njih. Drugo težišče je delo z litijsko-žveplovimi akumulatorji v zvezi s širokimi evropskimi konzorciji v dveh evropskih projektih, ki jih koordiniramo mi. Pri litijsko-žveplovih akumulatorjih govorimo o veliko večji energijski gostoti za veliko nižjo ceno. Kot sem omenil, sodelujemo z velikim konzorcijem priznanih avtomobilskih proizvajalcev, kot so Renault, Volvo, Peugeot, in močnim evropskim proizvajalcem baterij Saft, francoskim podjetjem iz Bordeauxa. V projekt so vključeni še inštituti in univerze, od švedskih in finskih do izraelskih in španskih.

Je razvoj takih baterijskih sistemov eno od vodilnih področij kemijskega inštituta?

Lahko bi rekli, da je eno vodilnih. Kemijski inštitut je znan tudi po drugih področjih, predvsem na biopodročju imamo zelo uspešne znanstvenike, pa tudi na področju materialov, predvsem polimerov, se na evropski ravni uvrščamo precej visoko.

Kako vroča tema pa so trenutno baterijski sistemi v svetu? Kako raziskovalci tekmujejo med sabo, da bi se dokopali do čim zmogljivejših baterijskih sistemov?

Kot vemo, prihodnost fosilnih goriv ni svetla. Človeštvo bo moralo najti nov način, kako gospodarno in učinkovito porabljati energijo. Baterija je pač ena izmed možnosti, ki lahko shranjujejo vso energijo iz obnovljivih virov, zato se po svetu vlaga ogromno sredstev v ta področja. To pomeni zelo veliko konkurenco, koncentracijo znanja, hkrati pa to omogoča tudi nadaljnji razvoj. Pri tem je treba napredek in delo raziskovalnih skupin po svetu zelo budno spremljati ter njihova odkritja s pridom uporabljati, tako da – po domače povedano – ne zaostajaš za njimi. Sredstva, ki jih v posameznih državah namenjajo za to, so velikanska, ponekod veliko večja od proračuna celotne slovenske agencije za raziskovanje.

Katera so ključna raziskovalna središča? Slovenci smo močni; kateri narodi še slovijo kot najuspešnejši na področju baterijskih sistemov?

Zagotovo je treba tukaj omeniti Francoze. Ti so tradicionalno navzoči pri razvoju baterijskega področja. Francoski raziskovalec Gaston Plante je na primer razvil svinčev akumulator. Sem lahko štejemo tudi Italijane, le da pri njih to področje ni tako dobro financirano. Nemci so v zadnjem času vložili v ta razvoj zelo veliko denarja. Če gledamo zgodovinsko, so za večino pomembnih odkritij na področju baterij zaslužni evropski raziskovalci, ki delajo doma ali v tujini. Potem pa te dosežke izkoristijo Združene države Amerike in jih nadgradijo v tehnologije, ki jih komercializirajo na Daljnem vzhodu. Moram pa omeniti, da tudi razvoj na Kitajskem ni več samo posnemanje – tudi tam so odlični raziskovalci, ki so se izšolali v Evropi in vodijo velike raziskovalne skupine, veliko večje, kot je naša.

Kako je potekal razvoj teh baterijskih sistemov? Javnost je nanje postala pozorna šele z napredkom električnih vozil, ampak to se je najverjetneje že dolgo pripravljalo v raziskovalnih središčih.

Da, ozreti se moramo v 70-a leta 20-ega stoletja, ko so spoznali, da baterije, ki so na voljo, ne zadovoljujejo potreb, predvsem v vesoljski tehnologiji. Takrat se je začelo razmišljati o litijevih baterijah. Pri tem vemo, da je litij najbolj elektronegativni element, se pravi, da imamo lahko najvišjo napetost enega elektrokemijskega člena in s tem veliko več energije kot z navadnimi svinčevimi akumulatorji. Takrat so v zvezi s tem naleteli na velike težave, ki so jih reševali postopoma, leta 1991 pa se je začela komercializacija prvega litijskoionskega akumulatorja, na tržišče ga je dalo podjetje Sony. Takrat je bila energijska gostota približno 0,8 amperske ure – za primerjavo, danes imamo v enaki prostornini že skoraj 3,5 amperske ure. V teh 25-ih letih je šel razvoj naprej, izdelali smo nove materiale, odkrili nove zakonitosti delovanja akumulatorjev, ki jih uporabljamo pri komercialnih izdelkih. Hkrati pa smo dosegli mejnik, ki smo ga predvideli – namreč, da energijske gostote litijsko-ionskih akumulatorjev ne bomo več mogli povečevati. V elektrokemijski reakciji namreč potrebujemo elektrone – pri tem pa nismo vedeli, kako bi povečali gostoto elektronov na določeno maso. Z objavo v reviji Science nam je uspelo pokazati, da se ta gostota lahko poveča na račun kisika, ki je v bateriji shranjen v obliki oksidov, prehodnih kovin – z izkoriščanjem tega redoks člena lahko do 50 odstotkov povečamo energijsko gostoto.

Morda bi na tej točki pojasnili, katere vrste baterij poznamo?

Litijskoionski akumulator je najbolj razširjen. Litijsko-žveplovi počasi prodirajo na tržišče, končuje se obdobje razvoja, nekaj podjetij po svetu jih preizkuša za različne namene (vzdržljivost, starost, varnostni vidik). Poznamo še litijsko-zračne sisteme. Njihova energijska gostota bi omogočila upravljanje letal na daljših, nekaj 1000 kilometrov dolgih razdaljah s stotimi potniki na krovu, vendar je treba celoten sistem še dodelati, da bo lahko deloval zunaj laboratorijskega okolja. Potem imamo zelo pomembno skupino natrijevih akumulatorjev. Ti ponujajo veliko možnosti na področju shranjevanja električne energije iz obnovljivih virov, energijsko gledano, pa so to malce šibkejši akumulatorji, energijska gostota je manjša. Natrij je sicer zelo razširjen element, razmeroma ugoden, zato lahko z njim gradimo velike sisteme. Naslednja skupina so akumulatorji na podlagi magnezija, morda kalcija. Energijska gostota bi bila lahko pri teh večja kot v litijskoionskih akumulatorjih, a je njihov razvoj šele na začetku; je pa nujen zaradi ohranjanja dostopa do surovin. Magnezij je namreč pogost element na Zemlji, dostopen vsem državam, litij pa je precej bolj omejen in geopolitično manj neodvisen. To pa lahko pripelje do novih trenj.

Kaj pa vodik?

Gorivne celice pa so druga zgodba. Poznamo jih iz obdobja med Sonyjevo komercializacijo in razvojem litijsko-ionskih akumulatorjev. V tistem času se je govorilo: »To smo naredili, za avtomobile pa potrebujemo vodik.« Pa vendar se uporaba gorivnih celic še do danes ni razširila. Verjamem pa, da bosta akumulator in gorivna celica v prihodnje složno sodelovala v mobilnosti.

Kako dolge razdalje pa že lahko premagajo avtomobili, v katere so vgrajene take baterije?

To je odvisno od več dejavnikov. Koliko kilometrov lahko prevozite z enim bencinskim tankom? Odvisno od njegove velikosti. Enako je z baterijami. Trenutno lahko z njimi prevozimo več sto kilometrov. Če to preračunamo na energijo, shranjeno v akumulatorju, smo zelo blizu razdalji, ki jo lahko prevozimo s komercialnimi avtomobili.

Pa ste si pred desetimi leti predstavljali takšen napredek?

Ne le pred desetimi, pred 17-imi leti, ko sem se pridružil skupini, sem dobil zamisel, da ne bi delali akumulatorjev za mobitele, ampak za avtomobile. No, to zamisel sem zdaj malo spremenil – zdaj pridobivamo električno energijo kar za letala.

Kako so takrat gledali na vas? Ste veljali za futurista ali so bili vaši cilji realni?

Ne, to so bili čisto realni cilji. Tudi pokojni profesor Janko Jamnik je imel podobna prepričanja.

Kako pa je z letali? Bi torej taki baterijski sistemi res lahko poganjali tudi letala?

To pa ni le vprašanje baterije, ampak celotnega sistema. To je dolgoročen projekt in zato upam, da bom še dejaven, ko ga bodo uresničili.

Kaj bi na tem področju radi videli v prihodnjih 17-ih letih?

Predvsem si želim, da bi imelo delo, ki ga opravlja naša skupina, sadove v komercialnih izdelkih. Pokazal bi rad, da je lahko naše znanje tudi uporabno, ne le objavljeno. To je tudi motivacija, s katero prihajam vsak dan zjutraj v službo in zaradi katere temu posvečam velik del svojega delovnika in tudi življenja.

Kako širite to motivacijo med svojimi sodelavci? Kako si postavljate cilje?

S kolegi iz tujine ni težav, vsi smo kot majhni otroci – smo zelo radovedni, hkrati pa težimo k nečemu novemu in boljšemu. Med mlajšimi sodelavci pa poskušam poiskati tiste, ki vedo, zakaj so prišli sem. Da niso torej prišli k meni zato, da bi pisali članke, temveč da bi se učili in naredili nekaj novega.

Kako dobro pa je o tem poučena javnost?

Včasih se sprašujem, kako lahko Slovenija še obstaja, ko pa je znanje tu tako malo cenjeno. Imamo odlično osnovno šolo. To je tudi razlog, zakaj smo se odločili, da ostanemo v Sloveniji – pozneje pa se to nekako izgubi, pomembnost znanja zvodeni.

Toda ali je znanje o stvareh, s katerimi se ukvarjate, dovolj razširjeno?

Velikokrat srečam sogovornike, ob katerih rečem lahko samo: »Le čevlje sodi naj Kopitar.«

Zdaj pa se, dr. Dominko, vrniva k objavi vaše skupine in skupine iz Francije v reviji Science. Za kaj gre?

Malo sem nakazal že prej: premaknili smo paradigmo miselnosti, da je energijska gostota litijskoionskih akumulatorjev omejena le na elektrone, ki prehajajo iz prehodnih kovin. Pokazali smo, da lahko v posebni kombinaciji pridobimo elektrone tudi iz kisika, ki je vezan v strukturo. S tem smo za 50 odstotkov povečali energijsko gostoto akumulatorja.

Kako se vam je porodila zamisel o tem?

Zamisel je zrasla iz dela drugih raziskovalnih skupin, ki so naletele na težave, a jih niso znale dobro razložiti. V tem času sem vodil virtualno skupino za litijskoionske akumulatorje na evropski ravni, idejo pa sva zasnovala s kolegom iz Francije. Dobila sva sredstva iz virtualnega inštituta, postdoktorski raziskovalec, ki sva mu bila mentorja, pa je opravil večino eksperimentalnega dela.

Koliko časa je preteklo od zamisli do objave?

Po navadi traja leta. Najprej je tu zamisel, potem je treba pridobiti denar, da jo lahko izpelješ, šele nato sledi raziskovanje. Pri nas je vse skupaj trajalo štiri leta. Nekateri drugi projekti zahtevajo še več časa.

Kaj pa to odkritje pomeni za industrijo, za napredek na področju litijskoionskih akumulatorjev?

Industrija to seveda podpira, saj to nakazuje možnosti, kako povečati zmožnosti električnih avtomobilov, avtonomičnost delovanja mobitelov in tako naprej … Predvsem pa s to tehnologijo ne bo treba spreminjati podporne elektronike, ki je v ozadju baterij in ki omogoča njihovo normalno delovanje brez varnostnih tveganj za široko uporabo.

Kako realna je vizija brezogljične družbe?

Zame popolnoma realna, a bo treba spremeniti našo miselnost.

Recimo v letih, desetletjih …?

Tu bi začel z drugega zornega kota … Zagotovo v nekaj desetletjih. Tehnologija bo zanesljivo napredovala, poleg tega pa prihajajo mlajše generacije, ki imajo čisto drugačno miselnost. Gospodje v drugi polovici življenja še moramo čutiti krmilo, pospeške in hrumenje motorja. Mlajšim generacijam pa ni bistvo avtomobil, zanje je bistven prevoz. Zanje ni tako pomembno, ali jih bo s točke A na točko B pripeljalo električno vozilo ali vozilo na gorivne celice ali katero drugo. Nove dimenzije prinašajo Googlovi, Applovi in brezpilotni avtomobili … To bo idealna priložnost za razvoj elektromobilnosti. Moramo pa se zavedati tudi tega, da se naša mesta utapljajo v smogu, dušikovih oksidih, ogljikovem dioksidu … To bo prisililo zakonodajalce, da bodo iz mest izkoreninili star način prevoza, in tedaj se bo promet dokončno elektrificiral.

Kako je s polnilnicami? Tudi to je eden od izzivov – kako omogočiti dovolj ustreznih polnilnic?

To je predvsem vprašanje, ki ga je treba nasloviti na vlado, mestna okrožja. Vedno govorimo, kaj bo prej – ali bo prej več električnih avtomobilov ali električnih polnilnic. Trenutno imamo veliko več polnilnic. A če se bo sprožil zagon elektromobilnosti, bo treba to nadgraditi.

V pogovoru malo prej, preden sem vključila mikrofon, ste mi omenili zanimivo misel s sestanka z zaposlenimi v Airbusu.

Da, na delavnici, ki jo je organiziral Airbus in na kateri sem sodeloval kot strokovnjak za baterije, smo v razpravi, zakaj raje električna letala z baterijami in ne z gorivnimi celicami, ugotovili, da je povečevanje energijske gostote baterij pričakovano. Eden od udeležencev, predstavil se je kot raketni znanstvenik, je ob tem slikovito dejal: »Poglejte, fantje. Pred desetimi leti ste govorili, da energijske gostote ne bomo mogli več povečati, da smo že dosegli maksimum, in zdaj imate z enako maso enkrat več energije na prostorninsko enoto. Se pravi – ne govorite mi, da čez 10 ali 20 let tega ne boste mogli podvojiti ali potrojiti.« Ali celo početveriti, kot zahtevajo.

Čeprav se vam danes najverjetneje še niti ne sanja, kako boste to dosegli?

Nekakšne obrise zamisli imam v glavi, a celotne tehnološke rešitve in vse elektrokemijske reakcije nam še niso znane.

Kakšno vlogo ima pri takih raziskavah industrija? Čutite njen pritisk? Kako sodelujeta raziskovalni sektor in industrija?

Sam se lahko pohvalim s sodelovanjem z industrijo na svetovni ravni. Pri evropskih projektih v zvezi z litijsko-žveplovimi akumulatorji je naš glavni motivator največji evropski proizvajalec baterij Saft. Želijo si to tehnologijo, vedo, da je to prihodnost, ob tem pa nam omogočajo, da vse dosežke iz laboratorijev pripeljemo na njihovo pilotno linijo in preizkusimo, kako delujejo v resnični baterijski celici. Sami s tem pridobivajo znanje, mi pa potrditev, da smo na pravi strani, in tudi informacije o tem, kakšni koraki so potrebni za komercializacijo. Na svetovni ravni pa naj omenim sodelovanje s podjetjem Honda in japonskimi raziskovalci preko nemške izpostave v Offenbachu. Pri tem gre za osnovno raziskovanje področja magnezijevih akumulatorjev. Z njimi si delimo rezultate, pa tudi delovno opremo. S tem jim pomagamo pri razvoju. Zagotovo je vizija večine, da bo prihodnost maloogljična, če ne že čisto brezogljična, zato pa je treba zavihati rokave in narediti nekaj novega.

Avtomobili in akumulatorji so po večini teme v pretežno moški domeni. Je v vaši skupini 14-ih raziskovalcev tudi kaj žensk? Se na tem področju srečujete tudi z ženskami ali je še vedno rezervirano predvsem za moške?

Res je, da je to področje bolj moško, ampak naj omenim, da je moja mlada raziskovalka pred kratkim povila zdravo hčerko. Imam še dve doktorandki, pred kratkim je ena končala doktorsko delo in je še zdaj zaposlena pri nas. Tako da nismo izključno moška skupina.

Akumulatorji zanimajo tudi ženske?

Seveda. Meje med tem, kar zanima ženske in moške, so čedalje bolj zabrisane.

 


Frekvenca X

674 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Bo elektrika poganjala tudi potniška letala? Morda pa res

07.01.2016

Področje razvoja električnih vozil in baterijskih sistemov zanje je na vrhuncu. Tudi Slovenci smo na področju razvoja tovrstnih akumulatorjev v svetovni raziskovalni špici. Baterijske sisteme prihodnosti in to, ali bodo lahko kmalu poganjali tudi potniška letala, razkrivamo ta četrtek po 11.45 v valovski oddaji Frekvenca X. Gosta: Dr. Robert Dominko, raziskovalec na Kemijskem inštitutu in Haresh Kamath, Electric Power Research Insitut, ameriška neprofitna R&D organizacija.

Raziskovalci Kemijskega inštituta so se podpisali pod prvo objavo v reviji Science

Številni se strinjajo, da bo med vsemi nujnimi pogoji za razvoj električnih vozil, ključno vlogo odigral predvsem napredek na področju baterijskih sistemov. Potem ko so zgodnji entuziasti še privolili v višje cene in krajšo obstojnost, bo vstop na širši trg zahteval več. Pa lahko to pričakujemo v kratkem?

“Smo sredi revolucije, zlasti na področju razvoja materialov za baterijske sisteme prihodnosti. Na to vplivajo tudi zelo veliki denarni vložki, ki jih temu področju namenjajo po vsem svetu. Obetamo si nove revolucionarne izboljšave, in to že v prihodnjih nekaj letih.”

To je Haresh Kamath z ameriškega neodvisnega in nevladnega  inštituta za raziskovanje električne energije, EPRI. Tudi Slovenci smo na področju razvoja akumulatorjev za električna vozila v svetovnem raziskovalnem vrhu.

Kot vemo, naša prihodnost s fosilnimi gorivi ni svetla. Človeštvo bo moralo najti nek nov način, kako ekonomično in učinkovito izrabljati energijo. Baterija je pač eden izmed tistih potencialov, ki je sposobna shranjevati vso energijo iz obnovljivih virov in zato se širom po svetu vlaga ogromno sredstev v ta področja, kar pomeni zelo veliko konkurenco in koncentracijo znanja.”

Pravi dr. Robert Dominko, ki se skupaj z ekipo svojih raziskovalcev in francoskimi sodelavci podpisuje pod objavo v prestižni reviji Science. Gre za prvo objavo kateregakoli raziskovalca s tega inštituta v tej reviji, poslušalci pa ste to ta teden nagradili tudi z izborom za Ime tedna.

Celotnemu pogovoru z dr. Dominkom lahko prisluhnete spodaj.

INTERVJU SI LAHKO PREBERETE TUDI SPODAJ:

Prof. Robert Dominko, nam lahko predstavite laboratorij, ki ga vodite?

Ko govorimo o sodobnih baterijskih sistemih, imamo v mislih nove sisteme z baterijami, ki imajo povečano energijsko gostoto. Preprosteje rečeno, to pomeni, da imamo v enaki prostornini in pri enaki masi shranjene veliko več energije. Delo v laboratoriju se deli na tri osnovna področja: eno je nadaljevanje dela z litijskoionskimi akumulatorji. Pri tem iščemo nove možnosti, kako povečati količino energije, shranjene v njih. Drugo težišče je delo z litijsko-žveplovimi akumulatorji v zvezi s širokimi evropskimi konzorciji v dveh evropskih projektih, ki jih koordiniramo mi. Pri litijsko-žveplovih akumulatorjih govorimo o veliko večji energijski gostoti za veliko nižjo ceno. Kot sem omenil, sodelujemo z velikim konzorcijem priznanih avtomobilskih proizvajalcev, kot so Renault, Volvo, Peugeot, in močnim evropskim proizvajalcem baterij Saft, francoskim podjetjem iz Bordeauxa. V projekt so vključeni še inštituti in univerze, od švedskih in finskih do izraelskih in španskih.

Je razvoj takih baterijskih sistemov eno od vodilnih področij kemijskega inštituta?

Lahko bi rekli, da je eno vodilnih. Kemijski inštitut je znan tudi po drugih področjih, predvsem na biopodročju imamo zelo uspešne znanstvenike, pa tudi na področju materialov, predvsem polimerov, se na evropski ravni uvrščamo precej visoko.

Kako vroča tema pa so trenutno baterijski sistemi v svetu? Kako raziskovalci tekmujejo med sabo, da bi se dokopali do čim zmogljivejših baterijskih sistemov?

Kot vemo, prihodnost fosilnih goriv ni svetla. Človeštvo bo moralo najti nov način, kako gospodarno in učinkovito porabljati energijo. Baterija je pač ena izmed možnosti, ki lahko shranjujejo vso energijo iz obnovljivih virov, zato se po svetu vlaga ogromno sredstev v ta področja. To pomeni zelo veliko konkurenco, koncentracijo znanja, hkrati pa to omogoča tudi nadaljnji razvoj. Pri tem je treba napredek in delo raziskovalnih skupin po svetu zelo budno spremljati ter njihova odkritja s pridom uporabljati, tako da – po domače povedano – ne zaostajaš za njimi. Sredstva, ki jih v posameznih državah namenjajo za to, so velikanska, ponekod veliko večja od proračuna celotne slovenske agencije za raziskovanje.

Katera so ključna raziskovalna središča? Slovenci smo močni; kateri narodi še slovijo kot najuspešnejši na področju baterijskih sistemov?

Zagotovo je treba tukaj omeniti Francoze. Ti so tradicionalno navzoči pri razvoju baterijskega področja. Francoski raziskovalec Gaston Plante je na primer razvil svinčev akumulator. Sem lahko štejemo tudi Italijane, le da pri njih to področje ni tako dobro financirano. Nemci so v zadnjem času vložili v ta razvoj zelo veliko denarja. Če gledamo zgodovinsko, so za večino pomembnih odkritij na področju baterij zaslužni evropski raziskovalci, ki delajo doma ali v tujini. Potem pa te dosežke izkoristijo Združene države Amerike in jih nadgradijo v tehnologije, ki jih komercializirajo na Daljnem vzhodu. Moram pa omeniti, da tudi razvoj na Kitajskem ni več samo posnemanje – tudi tam so odlični raziskovalci, ki so se izšolali v Evropi in vodijo velike raziskovalne skupine, veliko večje, kot je naša.

Kako je potekal razvoj teh baterijskih sistemov? Javnost je nanje postala pozorna šele z napredkom električnih vozil, ampak to se je najverjetneje že dolgo pripravljalo v raziskovalnih središčih.

Da, ozreti se moramo v 70-a leta 20-ega stoletja, ko so spoznali, da baterije, ki so na voljo, ne zadovoljujejo potreb, predvsem v vesoljski tehnologiji. Takrat se je začelo razmišljati o litijevih baterijah. Pri tem vemo, da je litij najbolj elektronegativni element, se pravi, da imamo lahko najvišjo napetost enega elektrokemijskega člena in s tem veliko več energije kot z navadnimi svinčevimi akumulatorji. Takrat so v zvezi s tem naleteli na velike težave, ki so jih reševali postopoma, leta 1991 pa se je začela komercializacija prvega litijskoionskega akumulatorja, na tržišče ga je dalo podjetje Sony. Takrat je bila energijska gostota približno 0,8 amperske ure – za primerjavo, danes imamo v enaki prostornini že skoraj 3,5 amperske ure. V teh 25-ih letih je šel razvoj naprej, izdelali smo nove materiale, odkrili nove zakonitosti delovanja akumulatorjev, ki jih uporabljamo pri komercialnih izdelkih. Hkrati pa smo dosegli mejnik, ki smo ga predvideli – namreč, da energijske gostote litijsko-ionskih akumulatorjev ne bomo več mogli povečevati. V elektrokemijski reakciji namreč potrebujemo elektrone – pri tem pa nismo vedeli, kako bi povečali gostoto elektronov na določeno maso. Z objavo v reviji Science nam je uspelo pokazati, da se ta gostota lahko poveča na račun kisika, ki je v bateriji shranjen v obliki oksidov, prehodnih kovin – z izkoriščanjem tega redoks člena lahko do 50 odstotkov povečamo energijsko gostoto.

Morda bi na tej točki pojasnili, katere vrste baterij poznamo?

Litijskoionski akumulator je najbolj razširjen. Litijsko-žveplovi počasi prodirajo na tržišče, končuje se obdobje razvoja, nekaj podjetij po svetu jih preizkuša za različne namene (vzdržljivost, starost, varnostni vidik). Poznamo še litijsko-zračne sisteme. Njihova energijska gostota bi omogočila upravljanje letal na daljših, nekaj 1000 kilometrov dolgih razdaljah s stotimi potniki na krovu, vendar je treba celoten sistem še dodelati, da bo lahko deloval zunaj laboratorijskega okolja. Potem imamo zelo pomembno skupino natrijevih akumulatorjev. Ti ponujajo veliko možnosti na področju shranjevanja električne energije iz obnovljivih virov, energijsko gledano, pa so to malce šibkejši akumulatorji, energijska gostota je manjša. Natrij je sicer zelo razširjen element, razmeroma ugoden, zato lahko z njim gradimo velike sisteme. Naslednja skupina so akumulatorji na podlagi magnezija, morda kalcija. Energijska gostota bi bila lahko pri teh večja kot v litijskoionskih akumulatorjih, a je njihov razvoj šele na začetku; je pa nujen zaradi ohranjanja dostopa do surovin. Magnezij je namreč pogost element na Zemlji, dostopen vsem državam, litij pa je precej bolj omejen in geopolitično manj neodvisen. To pa lahko pripelje do novih trenj.

Kaj pa vodik?

Gorivne celice pa so druga zgodba. Poznamo jih iz obdobja med Sonyjevo komercializacijo in razvojem litijsko-ionskih akumulatorjev. V tistem času se je govorilo: »To smo naredili, za avtomobile pa potrebujemo vodik.« Pa vendar se uporaba gorivnih celic še do danes ni razširila. Verjamem pa, da bosta akumulator in gorivna celica v prihodnje složno sodelovala v mobilnosti.

Kako dolge razdalje pa že lahko premagajo avtomobili, v katere so vgrajene take baterije?

To je odvisno od več dejavnikov. Koliko kilometrov lahko prevozite z enim bencinskim tankom? Odvisno od njegove velikosti. Enako je z baterijami. Trenutno lahko z njimi prevozimo več sto kilometrov. Če to preračunamo na energijo, shranjeno v akumulatorju, smo zelo blizu razdalji, ki jo lahko prevozimo s komercialnimi avtomobili.

Pa ste si pred desetimi leti predstavljali takšen napredek?

Ne le pred desetimi, pred 17-imi leti, ko sem se pridružil skupini, sem dobil zamisel, da ne bi delali akumulatorjev za mobitele, ampak za avtomobile. No, to zamisel sem zdaj malo spremenil – zdaj pridobivamo električno energijo kar za letala.

Kako so takrat gledali na vas? Ste veljali za futurista ali so bili vaši cilji realni?

Ne, to so bili čisto realni cilji. Tudi pokojni profesor Janko Jamnik je imel podobna prepričanja.

Kako pa je z letali? Bi torej taki baterijski sistemi res lahko poganjali tudi letala?

To pa ni le vprašanje baterije, ampak celotnega sistema. To je dolgoročen projekt in zato upam, da bom še dejaven, ko ga bodo uresničili.

Kaj bi na tem področju radi videli v prihodnjih 17-ih letih?

Predvsem si želim, da bi imelo delo, ki ga opravlja naša skupina, sadove v komercialnih izdelkih. Pokazal bi rad, da je lahko naše znanje tudi uporabno, ne le objavljeno. To je tudi motivacija, s katero prihajam vsak dan zjutraj v službo in zaradi katere temu posvečam velik del svojega delovnika in tudi življenja.

Kako širite to motivacijo med svojimi sodelavci? Kako si postavljate cilje?

S kolegi iz tujine ni težav, vsi smo kot majhni otroci – smo zelo radovedni, hkrati pa težimo k nečemu novemu in boljšemu. Med mlajšimi sodelavci pa poskušam poiskati tiste, ki vedo, zakaj so prišli sem. Da niso torej prišli k meni zato, da bi pisali članke, temveč da bi se učili in naredili nekaj novega.

Kako dobro pa je o tem poučena javnost?

Včasih se sprašujem, kako lahko Slovenija še obstaja, ko pa je znanje tu tako malo cenjeno. Imamo odlično osnovno šolo. To je tudi razlog, zakaj smo se odločili, da ostanemo v Sloveniji – pozneje pa se to nekako izgubi, pomembnost znanja zvodeni.

Toda ali je znanje o stvareh, s katerimi se ukvarjate, dovolj razširjeno?

Velikokrat srečam sogovornike, ob katerih rečem lahko samo: »Le čevlje sodi naj Kopitar.«

Zdaj pa se, dr. Dominko, vrniva k objavi vaše skupine in skupine iz Francije v reviji Science. Za kaj gre?

Malo sem nakazal že prej: premaknili smo paradigmo miselnosti, da je energijska gostota litijskoionskih akumulatorjev omejena le na elektrone, ki prehajajo iz prehodnih kovin. Pokazali smo, da lahko v posebni kombinaciji pridobimo elektrone tudi iz kisika, ki je vezan v strukturo. S tem smo za 50 odstotkov povečali energijsko gostoto akumulatorja.

Kako se vam je porodila zamisel o tem?

Zamisel je zrasla iz dela drugih raziskovalnih skupin, ki so naletele na težave, a jih niso znale dobro razložiti. V tem času sem vodil virtualno skupino za litijskoionske akumulatorje na evropski ravni, idejo pa sva zasnovala s kolegom iz Francije. Dobila sva sredstva iz virtualnega inštituta, postdoktorski raziskovalec, ki sva mu bila mentorja, pa je opravil večino eksperimentalnega dela.

Koliko časa je preteklo od zamisli do objave?

Po navadi traja leta. Najprej je tu zamisel, potem je treba pridobiti denar, da jo lahko izpelješ, šele nato sledi raziskovanje. Pri nas je vse skupaj trajalo štiri leta. Nekateri drugi projekti zahtevajo še več časa.

Kaj pa to odkritje pomeni za industrijo, za napredek na področju litijskoionskih akumulatorjev?

Industrija to seveda podpira, saj to nakazuje možnosti, kako povečati zmožnosti električnih avtomobilov, avtonomičnost delovanja mobitelov in tako naprej … Predvsem pa s to tehnologijo ne bo treba spreminjati podporne elektronike, ki je v ozadju baterij in ki omogoča njihovo normalno delovanje brez varnostnih tveganj za široko uporabo.

Kako realna je vizija brezogljične družbe?

Zame popolnoma realna, a bo treba spremeniti našo miselnost.

Recimo v letih, desetletjih …?

Tu bi začel z drugega zornega kota … Zagotovo v nekaj desetletjih. Tehnologija bo zanesljivo napredovala, poleg tega pa prihajajo mlajše generacije, ki imajo čisto drugačno miselnost. Gospodje v drugi polovici življenja še moramo čutiti krmilo, pospeške in hrumenje motorja. Mlajšim generacijam pa ni bistvo avtomobil, zanje je bistven prevoz. Zanje ni tako pomembno, ali jih bo s točke A na točko B pripeljalo električno vozilo ali vozilo na gorivne celice ali katero drugo. Nove dimenzije prinašajo Googlovi, Applovi in brezpilotni avtomobili … To bo idealna priložnost za razvoj elektromobilnosti. Moramo pa se zavedati tudi tega, da se naša mesta utapljajo v smogu, dušikovih oksidih, ogljikovem dioksidu … To bo prisililo zakonodajalce, da bodo iz mest izkoreninili star način prevoza, in tedaj se bo promet dokončno elektrificiral.

Kako je s polnilnicami? Tudi to je eden od izzivov – kako omogočiti dovolj ustreznih polnilnic?

To je predvsem vprašanje, ki ga je treba nasloviti na vlado, mestna okrožja. Vedno govorimo, kaj bo prej – ali bo prej več električnih avtomobilov ali električnih polnilnic. Trenutno imamo veliko več polnilnic. A če se bo sprožil zagon elektromobilnosti, bo treba to nadgraditi.

V pogovoru malo prej, preden sem vključila mikrofon, ste mi omenili zanimivo misel s sestanka z zaposlenimi v Airbusu.

Da, na delavnici, ki jo je organiziral Airbus in na kateri sem sodeloval kot strokovnjak za baterije, smo v razpravi, zakaj raje električna letala z baterijami in ne z gorivnimi celicami, ugotovili, da je povečevanje energijske gostote baterij pričakovano. Eden od udeležencev, predstavil se je kot raketni znanstvenik, je ob tem slikovito dejal: »Poglejte, fantje. Pred desetimi leti ste govorili, da energijske gostote ne bomo mogli več povečati, da smo že dosegli maksimum, in zdaj imate z enako maso enkrat več energije na prostorninsko enoto. Se pravi – ne govorite mi, da čez 10 ali 20 let tega ne boste mogli podvojiti ali potrojiti.« Ali celo početveriti, kot zahtevajo.

Čeprav se vam danes najverjetneje še niti ne sanja, kako boste to dosegli?

Nekakšne obrise zamisli imam v glavi, a celotne tehnološke rešitve in vse elektrokemijske reakcije nam še niso znane.

Kakšno vlogo ima pri takih raziskavah industrija? Čutite njen pritisk? Kako sodelujeta raziskovalni sektor in industrija?

Sam se lahko pohvalim s sodelovanjem z industrijo na svetovni ravni. Pri evropskih projektih v zvezi z litijsko-žveplovimi akumulatorji je naš glavni motivator največji evropski proizvajalec baterij Saft. Želijo si to tehnologijo, vedo, da je to prihodnost, ob tem pa nam omogočajo, da vse dosežke iz laboratorijev pripeljemo na njihovo pilotno linijo in preizkusimo, kako delujejo v resnični baterijski celici. Sami s tem pridobivajo znanje, mi pa potrditev, da smo na pravi strani, in tudi informacije o tem, kakšni koraki so potrebni za komercializacijo. Na svetovni ravni pa naj omenim sodelovanje s podjetjem Honda in japonskimi raziskovalci preko nemške izpostave v Offenbachu. Pri tem gre za osnovno raziskovanje področja magnezijevih akumulatorjev. Z njimi si delimo rezultate, pa tudi delovno opremo. S tem jim pomagamo pri razvoju. Zagotovo je vizija večine, da bo prihodnost maloogljična, če ne že čisto brezogljična, zato pa je treba zavihati rokave in narediti nekaj novega.

Avtomobili in akumulatorji so po večini teme v pretežno moški domeni. Je v vaši skupini 14-ih raziskovalcev tudi kaj žensk? Se na tem področju srečujete tudi z ženskami ali je še vedno rezervirano predvsem za moške?

Res je, da je to področje bolj moško, ampak naj omenim, da je moja mlada raziskovalka pred kratkim povila zdravo hčerko. Imam še dve doktorandki, pred kratkim je ena končala doktorsko delo in je še zdaj zaposlena pri nas. Tako da nismo izključno moška skupina.

Akumulatorji zanimajo tudi ženske?

Seveda. Meje med tem, kar zanima ženske in moške, so čedalje bolj zabrisane.

 


30.12.2019

Znanstveni vrhovi 2019

O fotografiji črne luknje, kvantni premoči, novih arheoloških najdiščih, napredujoči personalizirani medicini in vse bolj natančnih podnebnih napovedih: skozi vse leto smo lahko spremljali prebojne dosežke, ki so spremenili naš pogled na vesolje, zgodovino, tehnologijo in nenazadnje okolje. Prvič smo lahko videli prizore, ki jim človeško oko ni bilo priča še nikoli. Spoznavali smo, česa vsega še ne vemo o zgodovini naše vrste, in se hkrati spraševali, kakšna prihodnost nas čaka. Leto 2019 v znanosti je bilo vznemirljivo, zapuščina odkritij pa bo odmevala tudi v prihodnosti. Pregled znanosti v letu 2019 sta pripravila Maja Ratej in Jan Grilc.


12.12.2019

Nesojena Nobelovka Jocelyn Bell Burnell

Jocelyn Bell Burnell ima za sabo že več kot 50 let dela v astronomiji. Ampak njeno ključno odkritje se je zgodilo čisto na začetku. Prav na točki, ko je šele dobro začela svojo strokovno pot. Tedaj je nepričakovano naletela na nekaj, kar si sprva ni znala razložiti, in je odkritje v šali poimenovala kar »mali zeleni možje, Little Green Men«. Za svoje odkritje bi morala dobiti Nobelovo nagrado, a je ni. Dobil jo je njen mentor, kar je še danes eno od kontroverznih poglavij v zgodovini podeljevanja Nobelovih nagrad. Jocelyn Bell Burnell je v Oxford poklicala Maja Ratej.


05.12.2019

Iskanje zvočnih spominov različnih generacij

Zvoki nekega kraja vzbujajo spomine. Morda tudi tiste najbolj zabrisane in skoraj pozabljene. Prav take spomine iščejo raziskovalci v mednarodnem projektu Sensotra, ki prostovoljce opremijo s kamerami in mikrofoni in jih odpeljejo na sprehod po domačem kraju. Sprašujejo se, kako različne generacije zaznavajo in dojemajo mestno okolje, ki se hitro spreminja. Znanstveniki iz treh držav, podprti s sredstvi Evropskega raziskovalnega sveta, so za potrebe raziskovanja razvili povsem novo metodo, ki jih je pripeljala do nepričakovanih ugotovitev. O tem se pogovarjamo v Frekvenci X, kjer spremljamo najboljšo finsko visokošolsko profesorico s sodelavci iz treh držav na sprehodu po zvočnih spominih človeštva. Gosta: dr. Helmi Järviluoma, Univerza vzhodne Finske, dr. Rajko Muršič, profesor na Oddelku za etnologijo in kulturno antropologijo na ljubljanski Filozofski fakulteti. Oddajo je pripravil Jan Grilc.


28.11.2019

Danuvius je prva opica, ki je "stopila na dve nogi"

Pred 12 milijoni let se je na našem prostoru sprehajal Danuvius. “Danuvius je izjemna najdba, o kateri vemo nekaj dni, ne moremo govoriti, da je pol opica pol človek. To je opica,” trdi dr. Petra Golja z Biotehniške fakultete v Ljubljani. Pa čeprav gre za opico, je ta opica prva, ki je “stopila na dve nogi” – vsaj po do zdaj razpoložljivih podatkih. To je z raziskovalno skupino odkrila glavna raziskovalka paleontologinja dr. Madeline Bohme z nemške univerze v Tübingenu: “Odkritje je bilo veliko presenečenje za vse, saj smo ugotovili, da so kosti bolj podobne človeškim kot tistim velikih opic. Ob našem raziskovanju se je izkazalo, da je ta nova vrsta – Danuvius – hodila dvonožno.” Se je bipedalizem torej razvil dvakrat prej, kot smo doslej domnevali, in v Evropi, ne v Afriki, v kakšnih razmerah je živel Danuvius, bi ga lahko označili za evropsko Lucy …


21.11.2019

"Pozdrav od otrok planeta Zemlje"

Frekvenca X se tokrat podaja na razburljivo potovanje po brezmejnih medzvezdnih in galaktičnih širjavah. Kakšne so bile čisto prve galaktične jasli, kakšne zvezde so nastajale v njih, bo razložila profesorica na Kalifornijski univerzi v Davisu dr. Maruša Bradač. Zavihteli pa smo se tudi na krov legendarnih plovil Voyager, ki s seboj po vesolju nosita skrivnosten zapis o človeški civilizaciji. Kaj je zapisano na zlatih ploščah in kako bi jih lahko razumel nič hudega sluteči vesoljski sprehajalec milijone kilometrov stran, pa bosta pojasnila astrofizik dr. Tomaž Zwitter in glasbeni urednik in pisatelj Jonathan Scott.


14.11.2019

Akademskih 100: Avtonomija na preizkušnji

Ljubljanska univerza je ob ustanovitvi orala ledino v akademski sferi. Po 100 letih se je znašla v položaju, ko si znova postavlja ključna vprašanja glede svoje vloge v družbi. S kakšnim vetrom jadra univerza, ki se po eni strani lahko pohvali z izjemnimi raziskovalnimi dosežki, po drugi strani pa spopada z notranjimi aferami. Sklepna epizoda serije Akademskih 100. *Oddajo pripravljata Maja Ratej in Gašper Andrinek. Izbor glasbe Andrej Karoli. V oddaji so nastopili zaslužni profesor na Fakulteti za elektrotehniko v Ljubljani dr. Rafael Cajhen, profesor mikrobiologije dr. Blaž Stres, novinarka Tina Kristan, sociolog kulture dr. Rastko Močnik, filozof dr. Darko Štrajn, profesor na Fakulteti za strojništvo dr. Matevž Dular, profesor na Fakulteti za računalništvo in informatiko v Ljubljani dr. Ivan Bratko, podoktorska raziskovalka računalništva na Univerzi Stanford dr. Marinka Žitnik.


07.11.2019

Akademskih 100: Od Anke do Anje ... in sto let vmes

Prvi človek, ki je na ljubljanski univerzi doktoriral pred stoletjem, ni bil on, temveč ona. To je bila Anka Mayer Kansky, ena izmed tistih slovenskih izobraženk, ki so utrle pot novim generacijam žensk, da se lahko danes množično izobražujejo. Kdo je bila prva slovenska doktorica, kako se je na ljubljanski univerzi znašla prva učiteljica in zakaj je imela univerza v vsej stoletni zgodovini le eno rektorico? Serija: Akademskih 100 Epizoda: Od Anke do Anje ... in sto let vmes Oddajo pripravljata Maja Ratej in Gašper Andrinek


24.10.2019

Akademskih 100: Veter v jadrih upora

Med drugo svetovno vojno bi lahko ljubljansko univerzo z več gledišč označili za vir upora, legendarni Radio Kričač so na neki način zakrivili študenti elektrotehniške fakultete. Skoraj 20 let pozneje se je zgodila (kulturna) revolucija "baby boom" generacije, ki se je uprla svojim staršem. Zakaj je bila zasedba Filozofske fakultete 40 let pozneje drugačna, sploh pa, kako se je na to odzvala Univerza? Ta hip kaže, da se utegnejo mladi najprej kritično odzvati in se zaradi okoljskih groženj povezati med seboj. Zakaj jih ta tema tako podžiga? Se danes na univerzi še rojevajo progresivne in subverzivne ideje? Serija: Akademskih 100. Druga epizoda: Veter v jadrih upora. Oddajo pripravljata Maja Ratej in Gašper Andrinek


17.10.2019

Akademskih 100: Grad vedam dviga v beli se Ljubljani

Začenjamo miniserijo ob stoletnici ljubljanske univerze. Od že skoraj legendarnih začetkov je šlo skozi njene klopi več sto tisoč študentov, danes pa ji očitajo, da je napreden in liberalen veter, ki je sprva zavel po njej, zatohlo fevdalen, brez moči, da poraja nove sodobne miselne tokove. Kdo so bili izjemni posamezniki, vpeti v okovje te naše osrednje izobraževalne in raziskovalne ustanove, kaj si imajo čez stoleten prepad povedati njeni pionirji in sodobni nasledniki? Oddajo pripravljata Maja Ratej in Gašper Andrinek.


10.10.2019

Nobelove nagrade za leto 2019

Kozmologija in eksoplaneti, razvoj litij-ionskih baterij, pa pomen kisika za delovanje naših celic. To so letošnje prve tri Nobelove nagrade - za fiziko, kemijo in medicino. Zadnjo prav s področja obnašanja celic v telesu, ko se raven kisika v njih zniža. “Zaznavanje kisika ima res velik pomen - od tega, kako delujejo večcelični organizmi, do tega, da ima velik vpliv na različne bolezni, tudi na razvoj in nastanek raka,” pravi dr. Maja Čemažar z Onkološkega inštituta UKC Ljubljana. Z dr. Majo Čemažar, z dr. Andrejo Gomboc z UNG in z dr. Robertom Dominkom s Kemijskega inštituta smo pokomentirali letošnji Nobelov izbor.


03.10.2019

Tri nova radiovedna vprašanja

Ali ima vesolje vonj? Koliko megabajtov podatkov najdemo v prstnem odtisu? Koliko shujšamo med hojo v hribe zaradi pojenjajoče sile težnosti? Na tri čisto resna radiovedna vprašanja, ki so nam jih zastavili poslušalci, Maja Ratej in Jan Grilc s strokovnjaki iščeta čisto resne odgovore. V rubriki Frekvence X Radiovedni!


19.09.2019

IG Nobelove nagrade: Skozi humor se naredi refleksija znanosti

Pica kot zdrav obrok, preklinjanje v avtomobilu, znamke na spolnem udu in raziskava o nakladanju. To so IG Nobelove nagrade, ob razglasitvi katerih se najprej nasmejemo, potem pa zamislimo. Nagrade, ki jih podeljujejo že od leta 1991, omogočijo publiciteto tistim, nekoliko zapostavljenim temam. Koga – denimo – ne bi zanimalo, ali lahko redno uživa pico in ima ob tem manjše tveganje za nastanek določenih bolezni, ali pa, da preklinjanje v avtomobilu ne sprosti, temveč povzroči še več stresa. Z IG Nobelovimi nagrajenci in komentatorjem filozofom in fizikom dr. Sašem Dolencem bomo hodili po avanturističnih poteh razsvetljenskih možganskih hodnikov, ki ob žuborenju idej peljejo v raziskavo o nakladanju, ki je leta 2016 prejela IG Nobelovo nagrado za mir. Več v podkastu, ki sta ga pripravili Maja Stepančič in Uršula Zaletelj.


12.09.2019

Matematika je kot družabne igre, določiš pravila, po katerih igraš

Pitagora in njegovi učenci so verjeli, da je vse v vesolju mogoče matematično izraziti s števili. “Jaz matematiko primerjam z družabnimi igrami, ker tako kot pri igrah tudi pri matematiki nekako določiš pravila, na podlagi katerih boš igral,” pravi Marko Čmrlec, bodoči študent na Cambridgeu, olimpijec, ki je letos dosegel srebrno medaljo na mednarodni olimpijadi v matematiki v Veliki Britaniji. “Če nekdo doseže pohvalo, kaj šele medaljo, je to za tako mladega človeka življenjski uspeh,” pravi Andrej Guštin iz Društva matematikov, fizikov in astronomov Slovenije. Mladi olimpijci – Tevž Lotrič, Ema Mlinar in Marko Čmrlec, ki so poletne počitnice preživeli alternativno … “Je dobra nagrada, da greš za en teden v tujino. Ampak ne samo to, lahko se družiš z ljudmi, ki so ti podobni.” … so bili sogovorniki Frekvence X.


05.09.2019

Poletna znanstvena odkritja

Znanost tudi med poletjem ni na počitnicah. Dogajanje je bilo pestro – od tega, da smo se za las izognili srečanju z asteroidom, do tega, da podatke v tehnološkem svetu že zapisujejo na DNK, da je mikroplastika vse bolj pogosta priloga v naši pitni vodi, pa do tega, da so predniki naše človeške vrste po Evropi hodili že veliko veliko prej, kot se je domnevalo doslej. Nastopajo gigantski papagaj, računalniški čip s 400.000 jedri, robotska roka, ki jo usmerjamo s pomočjo misli, atomska ura, za celo stolpnico velik kup kamenja, štirje milijoni olimpijskih bazenov, planet WASP-38 b, balada biskajskih kitov in partija pokra z računalnikom. Pregled znanstvenega dogajanja sta pripravila Maja Ratej in Jan Grilc.


05.07.2019

Fizik Uroš Seljak med ameriško akademsko elito

V Ljubljani so se v teh dneh v okviru Svetovnega kongresa slovenskih fizikov zbrali naši fiziki in fizičarke, ki so se uveljavili na tujih univerzah in inštitutih. Med njimi slovenski strokovni javnosti predava tudi dr. Uroš Seljak, profesor fizike in sodirektor centra za astrofiziko na Univerzi Kalifornije v Berkleyju, ki je bil pred kratkim kot redni član sprejet v Nacionalno akademijo znanosti v Združenih državah Amerike. Več o tem, kaj mu pomeni včlanitev v najprestižnejšo ameriško znanstveno ustanovo in kako se v svojem profesionalnem življenju posveča iskanju temeljnih značilnosti vesolja s pomočjo kozmoloških opazovanj, pove v petek opoldne.


27.06.2019

Kaj v resnici sporoča serija Černobil

Ste kaj radioaktivni? Ali vas je nemara bolje vprašati, če ste kaj radiofobni? Frekvenca X si je ogledala HBO-jevo serijo Černóbil o največji jedrski nesreči v zgodovini, ki v javnosti sproža številne odzive. Po eni strani je najbolje ocenjena serija na IMDB, po drugi strani se nanjo zgrinjajo številni očitki o zavajanju s podatki. Kaj je res in kaj ne in kako je Černóbil znova potegnil na plano radiofobijo?


20.06.2019

Zelo žalostno bi bilo, če bi se izkazalo, da smo edina inteligentna vrsta v vesolju

Christine Jones Forman in Bill Forman sta zakonca in vrhunska ameriška strokovnjaka na področju rentgenske astronomije. Zaposlena na centru za astrofiziku Harvard Smithsonian sta se z odmevno črno luknjo v galaksiji M87 ukvarjala že dlje časa, ob tem pa več desetletij tako rekoč iz prve roke spremljala napredek na področju rentgenske astronomije. O majhnosti človeka v primerjavi z vesoljem, črnih luknjah, družinskem življenju z astronomijo, zlasti pa o žarkih X v astronomiji več rečemo ta četrtek točno opoldne.


10.06.2019

Frekvenca X na radijskem dvorišču: 50 let po velikem koraku za človeštvo

Siva, pusta, kraterjev polna, a vseeno navdihujoča – Luna. 50 let bo, odkar je Neil Armstrong kot prvi človek pustil svojo sled na našem edinem naravnem satelitu in na Zemljo sporočil tisto zgodovinsko: “To je majhen korak za človeka, a velik za človeštvo.” Pristanek na Luni je pomenil neverjeten napredek, naznanil je, da lahko človek s tehnologijo osvaja tudi prostrano vesolje, in odstrl novo raven tekmovanja med svetovnimi velesilami. Kakšen pečat je v družbi, politiki in znanosti pustil pristanek na Luni 20. julija 1969 in kako danes, petdeset let po tem zgodovinskem dogodku, Luna še preseneča, združuje, ločuje? Ob praznovanju rojstnega dneva Vala 202 smo pripravili javno snemanje Frekvence X na radijskem dvorišču, ki sta ga vodila Maja Stepančič in Jan Grilc. Gosti razprave: astrofizik dr. Tomaž Zwitter biokibernetik dr. Igor Mekjavič ameriški astronavt slovenskih korenin Ronald Šega astronom Andrej Guštin


06.06.2019

Človek 5/5: Samovozeča etika prihodnosti

Morda prihodnost ni še nikoli ponujala toliko nejasnosti in dilem kot danes. Lahko da nas bo umetna inteligenca nepovratno prehitela kot dirkalni avto. In vsak dan ponudila nekaj deset odkritij v rangu Nobelovih nagrad. Nekateri zagovarjajo scenarij, da bo umetna inteligenca celo prevzela nadzor nad človekom. V vsakem primeru bo treba s samovozečo prihodnostjo najti sožitje in jo pametno zavirati na mejnih območjih. A nobena tehnologija ni dobra ali slaba sama po sebi, pomembno je, kako jo uporabljamo ljudje, pomembne so družbene okoliščine, politične odločitve. Bi torej ob razvoju umetne inteligence potrebovali čim več ali čim manj regulacije, bi se morali vse večje prisotnosti umetne inteligence bati ali se je veseliti? Kje so realne in kje znanstvenofantastične meje? V epilogu serije Quo vadis, človek? o etiki razvoja in samovozečih dilemah človeka prihodnosti. Od Zemlje do vesolja. Od Rdeče kapice do robota. O tem, kako bi lahko tehnologije tudi pomagale pri reševanju okolja. Razmišljajo sogovorniki različnih strok. Avtorji: Luka Hvalc, Hana Hawlina, Jan Grilc


29.05.2019

Človek 4/5: Algoritmi demokracije

“Vojna je mir. Svoboda je suženjstvo. Nevednost je moč.” Tako je pred natanko 70 leti George Orwell zapisal v romanu 1984. Je imel prav? Možnost večje (tehnološke) izbire ne pomeni nujno svetlejše prihodnosti. Niti v osebnem niti v družbenem smislu. Veliko podatkovje, družabna omrežja in algoritmi spreminjajo demokracijo in na novo definirajo pravila igre. Ključno bo najti konsenz okrog uporabe umetne inteligence in ohranitve ideje demokracije. Hladna vojna je preteklost, družbe prihodnosti bodo poleg podnebnih sprememb ogrožale informacijske in trgovinske krize, morebitne zlorabe orožja, ki ga bo upravljala umetna inteligenca. Kako bo z varnostjo, bo država namesto vojakov imela polno “kasarno” vrhunskih hekerjev, strokovnjakov za algoritme in robotskih psihiatrov? Osrednja gosta 4. dela serije Quo vadis, človek?! sta filozofinja Renata Salecl in obramboslovec Uroš Svete. Avtorji: Luka Hvalc, Hana Hawlina in Jan Grilc


Stran 11 od 34
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov