Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Zvezdne eksplozije, ki so jih videli prvi ljudje

21.04.2016

Že dolgo vemo, da je Zemlja nastala iz snovi, ki so jo supernove bruhnile v prostor pred skoraj petimi milijardami let. Doslej ni bilo zabeleženo, ali je zvezdni prah sedal na Zemljo tudi pozneje. Zdaj vemo, da so nebo pred tremi milijoni let razsvetljevale spektakularne zvezdne eksplozije supernov v okolici Sonca, kakih 200 ali 300 tisoč let pozneje pa se je na Zemljo usedel tudi njihov radioaktivni železov prah. Kako je uspelo zaznati sledi bližnje eksplozije supernove in kaj pomeni odkritje, da nekateri atomi izvirajo iz zvezdnih eksplozij v Sončevi okolici, boste zvedeli v novi izdaji Frekvence X.

Zemlja je stara skoraj 5 milijard let in je nastala iz snovi, ki so jo pred tem bruhnile v prostor zvezdne eksplozije z imenom supernove. Ali so se take eksplozije dogajale tudi pozneje, nismo vedeli, saj se je zdelo, da taki dogodki na Zemlji niso bili zabeleženi. Ta mesec se je to spremenilo. Postalo je jasno, da se je prah okoliških zvezdnih eksplozij na Zemljo usedal še nedavno.

V nadaljevanju objavljamo pogovor z dr. Antonom Wallnerjem z avstralske nacionalne univerze v Canberri in dr. Dieterjem Breitschwertom s tehniške univerze v Münchnu, vodjema dveh raziskav, ki sta bili ta mesec objavljeni v prestižni reviji Nature.

Pogovor z dr. Antonom Wallnerjem

Dr. Wallner, atomsko jedro železa je po navadi sestavljeno iz 56 delcev, 26 je protonov in 30 nevtronov. Nedavno pa ste preučevali železova jedra s 4 dodatnimi nevtroni. Zakaj je to “železo 60” zanimivo?

Železo 60 je posebna vrsta železa. To atomsko jedro ni stabilno. Je radioaktivno in razpada z razpolovnim časom 2,5 milijona let v drug stabilen element. Ker je Zemlja veliko starejša, je vse prvotno železo 60 do zdaj že razpadlo. Običajno stabilno železo obstaja kjerkoli na Zemlji, železo 60 pa ne. Če ga torej najdemo kje v zemeljskih plasteh, vemo, da je moral priti iz vesolja. In ker je radioaktivno, vemo, da je moralo to železo nastati v zadnjih nekaj milijonih let, saj bi drugače že razpadlo. Železo 60 je tako časovno označeno. Če bi železo 60 prišlo na Zemljo pred 10 ali 15 milijoni let, bi do danes že skoraj povsem razpadlo in ga na Zemlji ne bi mogli zaznati. Nekaj malega železa 60 nastaja tudi v meteoritih in mikrometeoritih, ki imajo izvor drugje v Osončju. Ker ti delci stalno bombardirajo Zemljo, so lahko odgovorni za nekaj železa 60 na Zemlji. Vendar so daleč najpomembnejši vir železa 60 zelo masivne zvezde, v katerih to železo nastane tik preden take zvezde eksplodirajo kot supernove. Med eksplozijo supernove zvezda izvrže v vesolje večino svoje snovi, z njo pa tudi pravkar nastala radioaktivna jedra, med katerimi je tudi železo 60. Če se tak dogodek zgodi relativno blizu našega Osončja in s tem Zemlje, obstaja možnost, da nekaj te snovi najde pot do Zemlje, se sčasoma usede nanjo in postane sestavni del geoloških plasti.

Železo s štirimi dodatnimi nevtroni je tako redko, da so mislili, da v naravi sploh ne nastopa. Kako vam uspe zaznati njegove sledi v zemeljskih plasteh in določiti njegovo pogostost?

Preučujemo geološke plasti in v njih iščemo to zunajzemeljsko železo 60. Geološke plasti se nalagajo zelo počasi. V našem primeru je to trajalo milijone let. Ker rastejo počasi, lahko iz njih izluščimo časovni razvoj. Sestavimo lahko časovno zaporedje, kronologijo, kjer za vsako plast vemo njeno starost. Ta ideja ni nova, pred več kot dvajsetimi leti so že govorili o možnosti iskanja atomskih jeder, ki so nastala ob eksplozijah supernov v naši okolici. Pionirsko delo so opravili na tehniški univerzi v Münchnu, kjer so prvi razvili tehnike za odkrivanje takih drobnih sledi železa 60 na Zemlji. Pri tem moramo biti sposobni prešteti vsak atom posebej, saj je v običajnem vzorcu le po nekaj atomov železa 60. Železo 60 smo torej morali ločiti od več tisočbilijonkrat bolj pogostega neradioaktivnega železa, seveda pa smo ga morali ločiti tudi od drugih kemičnih elementov v preiskovanih geoloških plasteh. Kolegi v Helmholtzovem centru v Dresdnu v Nemčiji in na univerzi v Tokiu so s kemičnim ločevanjem iz vzorcev zbrali vse železo. Ker pa so atomi železa 60 nekoliko masivnejši od običajnega železa, smo njihovo vsebnost lahko določili s tehniko, ki ji pravimo rentgenska masna spektrometrija. To je v osnovi isti način kot ga uporabljamo za določitev starosti vzorcev z radiokarbonskim datiranjem. Ker za določitev navzočnosti vsega nekaj atomov železa 60 potrebujemo izjemno občutljivost, smo uporabili eno od le dveh naprav na svetu, ki to zmoreta. V našem je to pospeševalnik delcev, ki ga imamo na avstralski nacionalni univerzi v Canberri, druga taka naprava pa je v Münchnu.

Dr. Wallner, vaš nedavni članek v reviji Nature pokaže, da je v dveh plasteh na Zemlji železa 60 veliko več kot v drugih plasteh. Kaj je vzrok za to?

Navzočnost železa 60 so pred kakim desetletjem zaznali že kolegi v Münchnu. Torej v tem nismo prvi. Že oni so pokazali, da je v plasti, ki je stara med 2 in 3 milijoni let, več te vrste železa. To nas je vzpodbudilo, da smo začeli s širše zastavljenim projektom. Zbrali smo različne tipe vzorcev iz dna Tihega oceana, Indijskega oceana in Atlantika. S skupaj 8 različnimi vzorci smo prvi sestavili globalno sliko navzočnosti železa 60 za obdobje zadnjih 10 milijonov let. Poleg potrditve prejšnjih dognanj smo ugotovili, da je obnašanje železa 60 povsod po svetu enako, časovne spremembe navzočnosti železa 60 pa so bile tudi zelo jasno vidne. Torej izvor tega železa nikakor niso mogli biti meteoriti, ampak je moralo nastati ob ekplozijah zvezd zunaj našega Osončja. Dodatno železo 60 smo zaznali v dveh plasteh, ena je bila starosti med milijonom in pol in tremi milijoni let, druga pa starosti med 6,5 in 8,5 milijoni let. V obeh primerih to železo prihaja iz prostora med zvezdami, najverjetneje pa so ga tja izbruhnile eksplozije supernov. Torej vemo, da je v okolici Sonca v tem obdobju eksplodiralo več supernov. To se ujema z našimi predstavami o dogajanju v naši galaktični okolici, z našim odkritjem pa smo to sliko tudi potrdili. Ko smo ocenili, koliko železa 60 nastane ob eksploziji supernove, smo po številu najdenih atomov lahko rekli tudi, da so se te eksplozije zgodile na razdalji, za katero svetloba potrebuje od 200 do 300 let.

Bližnja eksplozija supernove, ki je odgovorna za dodatno železo 60, je bila gotovo videti spektakurno.  Je bila tudi nevarna za življenje na Zemlji?

Govorimo o eksploziji, ki je tako daleč, da svetloba za pot do Zemlje potrebuje 200 ali 300 let. Zato ne verjamemo, da je taka eksplozija imela kakšne neposredne posledice za življenje na Zemlji. Če bi bila ta eksplozija supernove bližje, na primer le 50 ali 80 let potovanja svetlobe daleč, bi bilo drugače. V našem primeru pa je mogoče, da je bilo nekaj več kozmičnega sevanja, kar bi morda lahko pripomoglo k več oblakom v zemeljski atmosferi in posledično spremembi temperature in morda tudi klime na Zemlji. Zanimivo se je v istem času, kot je na Zemljo padalo radioaktivno železo 60, na Zemlji spremenila tudi temperatura. Pred približno 3 milijoni let se je ohladilo, kar je bilo pomembno tudi za razvoj človeka. Tudi pred 8 milijoni let ob drugem maksimumu železa 60 imamo spremembo zemeljske klime. Seveda pa še nismo prepričani, ali sta ti sovpadanji zgolj naključji, ali pa je med usedanjem železa 60 in klimatskimi spremembami res kakšna vzročna povezava. Zagotovo bo to predmet raziskav v bližnji prihodnosti.

Pogovor z dr. Dieterjem Breitschwerdtom

Prof. Breitschwerdt, ko gledamo nočno nebo, se zdi prostor med nami in zvezdami popolnoma prazen. Vendar to ni povsem res. Kaj lahko najdemo v okolici Sonca na razdaljah do nekaj sto let potovanja svetlobe?

V prostoru med zvezdami je razredčena medzvezdna snov v obliki plina, plazme in prahu, iz nje pa lahko nastajajo tudi nove zvezde. V okolici našega Sonca je podobno. Tu prevladuje predvsem močno segret in zelo razredčen plin v obliki plazme, ki ima temperaturo od nekaj sto tisoč do milijonov stopinj. Ta vroč plin imenujemo lokalni mehurček in je nastal kot posledica eksplozij supernov v okolici našega Sonca na oddaljenosti do približno 300 let potovanja svetlobe.

V članku, ki ste ga objavili v reviji Nature, pravite, da so naši človeški predniki lahko opazovali dve zvezdni eksploziji v okolici Sonca. Lahko poveste kaj, kje in kdaj sta se ti eksploziji zgodili?

Izračunali smo, da je moralo eksplodirati kakih 16 zvezd. In vse te eksplozije je bilo mogoče videti tudi z Zemlje. Dve najbližji sta se zgodili na razdalji med 300 in 325 svetlobnih let. Eksplodirali sta pred 2,3 in pred 1,5 milijoni let. Ti dve eksploziji sta bili izjemni. Kadar eksplodira supernova, je namreč za kratek čas videti tako svetla kot vse stotine milijard zvezd v naši Galaksiji skupaj. Videti je tako svetla kot polna Luna zbrana v točko, več tednov bi jo zagotovo bilo mogoče videti tudi podnevi.

Kaj bi torej na nebu videli naši predniki?

Tedaj bi eno noč na nebu videli zvezde kot po navadi, s prostim očesom seveda tudi tiste, ki so od nas oddaljene 300 svetlobnih let. Naslednjo noč pa bi videli zaslepljivo eksplozijo supernove. Ta se je seveda v resnici zgodila že pred 300 leti, vendar je njena svetloba toliko časa potrebovala do Zemlje. To noč bi torej namesto običajne nevpadljive zvezdice tam opazili izjemno svetlo piko, ki bi svetila toliko kot polna luna. Astronomi seveda vedno upamo, da se bo kaj takega zgodilo v obdobju našega življenja, vendar je bil zadnji tak srečnež Johannes Kepler, ki je tako eksplozijo opazoval leta 1608.

Pričakujemo kaj takega v bližnji prihodnosti?

Obstajajo napovedi, vendar so vse zvezde, ki bi lahko eksplodirale, veliko dlje od nas. Eksplozije, ki smo jih obravnavali, so bile od vseh v zadnjih 3 milijonih let nam najbližje. Kot smo razložili v članku, je bila eksplozija, ki se je zgodila pred 2,3 milijoni let, le 270 do 300 svetlobnih let daleč. Druga eksplozija je bila malenkost dlje, kakih 310 svetlobnih let daleč, in se je zgodila pred 1,5 milijona leti. V bližnji prihodnosti ne pričakujemo nobene eksplozije tako blizu nas. In tako bo še vsaj 10 ali 20 milijonov let, saj ne poznamo nobene zvezde v naši okolici, ki bi bila na tem, da eksplodira. So pa kandidatke za eksplozijo, ki so bolj oddaljene od nas. Betelgeza je tak primer bolj oddaljene zvezde, ki jo bo razneslo v prihodnjih 100 tisoč letih ali milijonu let.

Svetloba eksplozij teh supernov je dosegla Zemljo v vsega 300 letih. Delci, vključno z radioaktivno vrsto železa, ki so ga izvrgle te eksplozije, pa potujejo veliko počasneje kot svetloba. Koliko časa so ti delci potovali do Zemlje? Je morda Zemlja na kakšen način zaščitena pred tako prho delcev iz vesolja?

Podrobni izračuni so pokazali, da so delci supernove do Zemlje potovali kakih 100 tisoč let. Zemljo pred takim pršem električno nabitih delcev ščiti magnetno polje ter veter delcev s Sonca. Radioaktivno železo se je tej zaščiti izognilo, saj se je sprijelo v prašna zrna, ki imajo veliko večjo maso in jih zato magnetno polje ali veter Sončevih delcev ne uspe odkloniti z njihove poti in lahko oblijejo tudi Zemljo. Vse skupaj ni nič nevarnega. Izračunali smo, da se je na vso Zemljo usedlo le kakih 500 ton radioaktivnega železa 60, kar res ni veliko. To potrjuje tudi dejstvo, da smo se morali zelo potruditi, da smo te delce v geoloških plasteh na dnu oceanov sploh odkrili. So pa ti radioaktivni delci železa povsod, našli smo jih tudi v vzorcih kamenin z Lune.

Svetloba teh starodavnih zvezdnih eksplozij je že davno potemnela. Tako o njih sklepamo po zemeljskih usedlinah radioaktivnega železa 60. Morda vašo rekonstrukcijo zvezdnih eksplozij v Sončevi okolici podpirajo še kakšna druga opazovanja?

Ko smo poslali naš rezultat v objavo, smo ugotovili, da naši kolegi, ki analizirajo podatke satelita PAMELA, vidijo nekaj podobnega. Ta satelit skuša zaznati sledi antisnovi v vesolju. Kolegi so ugotovili, da opažajo presežek antiprotonov in pozitronov, to je delcev, ki imajo enako maso, vendar nasprotni električni naboj od običajnih protonov in elektronov. Neodvisno od nas so ugotovili, da ta presežek lahko razložijo kot posledico eksplozije supernove, ki se je zgodila pred kakima 2 milijonoma let na razdalji približno 300 svetlobnih let. Povsem neodvisno in na podlagi drugačnih opazovanj so torej prišli do razlage z eksplozijo ob tako rekoč enakem času in na enaki razdalji. Torej je naša razlaga dobila neodvisno potrditev.


Frekvenca X

674 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Zvezdne eksplozije, ki so jih videli prvi ljudje

21.04.2016

Že dolgo vemo, da je Zemlja nastala iz snovi, ki so jo supernove bruhnile v prostor pred skoraj petimi milijardami let. Doslej ni bilo zabeleženo, ali je zvezdni prah sedal na Zemljo tudi pozneje. Zdaj vemo, da so nebo pred tremi milijoni let razsvetljevale spektakularne zvezdne eksplozije supernov v okolici Sonca, kakih 200 ali 300 tisoč let pozneje pa se je na Zemljo usedel tudi njihov radioaktivni železov prah. Kako je uspelo zaznati sledi bližnje eksplozije supernove in kaj pomeni odkritje, da nekateri atomi izvirajo iz zvezdnih eksplozij v Sončevi okolici, boste zvedeli v novi izdaji Frekvence X.

Zemlja je stara skoraj 5 milijard let in je nastala iz snovi, ki so jo pred tem bruhnile v prostor zvezdne eksplozije z imenom supernove. Ali so se take eksplozije dogajale tudi pozneje, nismo vedeli, saj se je zdelo, da taki dogodki na Zemlji niso bili zabeleženi. Ta mesec se je to spremenilo. Postalo je jasno, da se je prah okoliških zvezdnih eksplozij na Zemljo usedal še nedavno.

V nadaljevanju objavljamo pogovor z dr. Antonom Wallnerjem z avstralske nacionalne univerze v Canberri in dr. Dieterjem Breitschwertom s tehniške univerze v Münchnu, vodjema dveh raziskav, ki sta bili ta mesec objavljeni v prestižni reviji Nature.

Pogovor z dr. Antonom Wallnerjem

Dr. Wallner, atomsko jedro železa je po navadi sestavljeno iz 56 delcev, 26 je protonov in 30 nevtronov. Nedavno pa ste preučevali železova jedra s 4 dodatnimi nevtroni. Zakaj je to “železo 60” zanimivo?

Železo 60 je posebna vrsta železa. To atomsko jedro ni stabilno. Je radioaktivno in razpada z razpolovnim časom 2,5 milijona let v drug stabilen element. Ker je Zemlja veliko starejša, je vse prvotno železo 60 do zdaj že razpadlo. Običajno stabilno železo obstaja kjerkoli na Zemlji, železo 60 pa ne. Če ga torej najdemo kje v zemeljskih plasteh, vemo, da je moral priti iz vesolja. In ker je radioaktivno, vemo, da je moralo to železo nastati v zadnjih nekaj milijonih let, saj bi drugače že razpadlo. Železo 60 je tako časovno označeno. Če bi železo 60 prišlo na Zemljo pred 10 ali 15 milijoni let, bi do danes že skoraj povsem razpadlo in ga na Zemlji ne bi mogli zaznati. Nekaj malega železa 60 nastaja tudi v meteoritih in mikrometeoritih, ki imajo izvor drugje v Osončju. Ker ti delci stalno bombardirajo Zemljo, so lahko odgovorni za nekaj železa 60 na Zemlji. Vendar so daleč najpomembnejši vir železa 60 zelo masivne zvezde, v katerih to železo nastane tik preden take zvezde eksplodirajo kot supernove. Med eksplozijo supernove zvezda izvrže v vesolje večino svoje snovi, z njo pa tudi pravkar nastala radioaktivna jedra, med katerimi je tudi železo 60. Če se tak dogodek zgodi relativno blizu našega Osončja in s tem Zemlje, obstaja možnost, da nekaj te snovi najde pot do Zemlje, se sčasoma usede nanjo in postane sestavni del geoloških plasti.

Železo s štirimi dodatnimi nevtroni je tako redko, da so mislili, da v naravi sploh ne nastopa. Kako vam uspe zaznati njegove sledi v zemeljskih plasteh in določiti njegovo pogostost?

Preučujemo geološke plasti in v njih iščemo to zunajzemeljsko železo 60. Geološke plasti se nalagajo zelo počasi. V našem primeru je to trajalo milijone let. Ker rastejo počasi, lahko iz njih izluščimo časovni razvoj. Sestavimo lahko časovno zaporedje, kronologijo, kjer za vsako plast vemo njeno starost. Ta ideja ni nova, pred več kot dvajsetimi leti so že govorili o možnosti iskanja atomskih jeder, ki so nastala ob eksplozijah supernov v naši okolici. Pionirsko delo so opravili na tehniški univerzi v Münchnu, kjer so prvi razvili tehnike za odkrivanje takih drobnih sledi železa 60 na Zemlji. Pri tem moramo biti sposobni prešteti vsak atom posebej, saj je v običajnem vzorcu le po nekaj atomov železa 60. Železo 60 smo torej morali ločiti od več tisočbilijonkrat bolj pogostega neradioaktivnega železa, seveda pa smo ga morali ločiti tudi od drugih kemičnih elementov v preiskovanih geoloških plasteh. Kolegi v Helmholtzovem centru v Dresdnu v Nemčiji in na univerzi v Tokiu so s kemičnim ločevanjem iz vzorcev zbrali vse železo. Ker pa so atomi železa 60 nekoliko masivnejši od običajnega železa, smo njihovo vsebnost lahko določili s tehniko, ki ji pravimo rentgenska masna spektrometrija. To je v osnovi isti način kot ga uporabljamo za določitev starosti vzorcev z radiokarbonskim datiranjem. Ker za določitev navzočnosti vsega nekaj atomov železa 60 potrebujemo izjemno občutljivost, smo uporabili eno od le dveh naprav na svetu, ki to zmoreta. V našem je to pospeševalnik delcev, ki ga imamo na avstralski nacionalni univerzi v Canberri, druga taka naprava pa je v Münchnu.

Dr. Wallner, vaš nedavni članek v reviji Nature pokaže, da je v dveh plasteh na Zemlji železa 60 veliko več kot v drugih plasteh. Kaj je vzrok za to?

Navzočnost železa 60 so pred kakim desetletjem zaznali že kolegi v Münchnu. Torej v tem nismo prvi. Že oni so pokazali, da je v plasti, ki je stara med 2 in 3 milijoni let, več te vrste železa. To nas je vzpodbudilo, da smo začeli s širše zastavljenim projektom. Zbrali smo različne tipe vzorcev iz dna Tihega oceana, Indijskega oceana in Atlantika. S skupaj 8 različnimi vzorci smo prvi sestavili globalno sliko navzočnosti železa 60 za obdobje zadnjih 10 milijonov let. Poleg potrditve prejšnjih dognanj smo ugotovili, da je obnašanje železa 60 povsod po svetu enako, časovne spremembe navzočnosti železa 60 pa so bile tudi zelo jasno vidne. Torej izvor tega železa nikakor niso mogli biti meteoriti, ampak je moralo nastati ob ekplozijah zvezd zunaj našega Osončja. Dodatno železo 60 smo zaznali v dveh plasteh, ena je bila starosti med milijonom in pol in tremi milijoni let, druga pa starosti med 6,5 in 8,5 milijoni let. V obeh primerih to železo prihaja iz prostora med zvezdami, najverjetneje pa so ga tja izbruhnile eksplozije supernov. Torej vemo, da je v okolici Sonca v tem obdobju eksplodiralo več supernov. To se ujema z našimi predstavami o dogajanju v naši galaktični okolici, z našim odkritjem pa smo to sliko tudi potrdili. Ko smo ocenili, koliko železa 60 nastane ob eksploziji supernove, smo po številu najdenih atomov lahko rekli tudi, da so se te eksplozije zgodile na razdalji, za katero svetloba potrebuje od 200 do 300 let.

Bližnja eksplozija supernove, ki je odgovorna za dodatno železo 60, je bila gotovo videti spektakurno.  Je bila tudi nevarna za življenje na Zemlji?

Govorimo o eksploziji, ki je tako daleč, da svetloba za pot do Zemlje potrebuje 200 ali 300 let. Zato ne verjamemo, da je taka eksplozija imela kakšne neposredne posledice za življenje na Zemlji. Če bi bila ta eksplozija supernove bližje, na primer le 50 ali 80 let potovanja svetlobe daleč, bi bilo drugače. V našem primeru pa je mogoče, da je bilo nekaj več kozmičnega sevanja, kar bi morda lahko pripomoglo k več oblakom v zemeljski atmosferi in posledično spremembi temperature in morda tudi klime na Zemlji. Zanimivo se je v istem času, kot je na Zemljo padalo radioaktivno železo 60, na Zemlji spremenila tudi temperatura. Pred približno 3 milijoni let se je ohladilo, kar je bilo pomembno tudi za razvoj človeka. Tudi pred 8 milijoni let ob drugem maksimumu železa 60 imamo spremembo zemeljske klime. Seveda pa še nismo prepričani, ali sta ti sovpadanji zgolj naključji, ali pa je med usedanjem železa 60 in klimatskimi spremembami res kakšna vzročna povezava. Zagotovo bo to predmet raziskav v bližnji prihodnosti.

Pogovor z dr. Dieterjem Breitschwerdtom

Prof. Breitschwerdt, ko gledamo nočno nebo, se zdi prostor med nami in zvezdami popolnoma prazen. Vendar to ni povsem res. Kaj lahko najdemo v okolici Sonca na razdaljah do nekaj sto let potovanja svetlobe?

V prostoru med zvezdami je razredčena medzvezdna snov v obliki plina, plazme in prahu, iz nje pa lahko nastajajo tudi nove zvezde. V okolici našega Sonca je podobno. Tu prevladuje predvsem močno segret in zelo razredčen plin v obliki plazme, ki ima temperaturo od nekaj sto tisoč do milijonov stopinj. Ta vroč plin imenujemo lokalni mehurček in je nastal kot posledica eksplozij supernov v okolici našega Sonca na oddaljenosti do približno 300 let potovanja svetlobe.

V članku, ki ste ga objavili v reviji Nature, pravite, da so naši človeški predniki lahko opazovali dve zvezdni eksploziji v okolici Sonca. Lahko poveste kaj, kje in kdaj sta se ti eksploziji zgodili?

Izračunali smo, da je moralo eksplodirati kakih 16 zvezd. In vse te eksplozije je bilo mogoče videti tudi z Zemlje. Dve najbližji sta se zgodili na razdalji med 300 in 325 svetlobnih let. Eksplodirali sta pred 2,3 in pred 1,5 milijoni let. Ti dve eksploziji sta bili izjemni. Kadar eksplodira supernova, je namreč za kratek čas videti tako svetla kot vse stotine milijard zvezd v naši Galaksiji skupaj. Videti je tako svetla kot polna Luna zbrana v točko, več tednov bi jo zagotovo bilo mogoče videti tudi podnevi.

Kaj bi torej na nebu videli naši predniki?

Tedaj bi eno noč na nebu videli zvezde kot po navadi, s prostim očesom seveda tudi tiste, ki so od nas oddaljene 300 svetlobnih let. Naslednjo noč pa bi videli zaslepljivo eksplozijo supernove. Ta se je seveda v resnici zgodila že pred 300 leti, vendar je njena svetloba toliko časa potrebovala do Zemlje. To noč bi torej namesto običajne nevpadljive zvezdice tam opazili izjemno svetlo piko, ki bi svetila toliko kot polna luna. Astronomi seveda vedno upamo, da se bo kaj takega zgodilo v obdobju našega življenja, vendar je bil zadnji tak srečnež Johannes Kepler, ki je tako eksplozijo opazoval leta 1608.

Pričakujemo kaj takega v bližnji prihodnosti?

Obstajajo napovedi, vendar so vse zvezde, ki bi lahko eksplodirale, veliko dlje od nas. Eksplozije, ki smo jih obravnavali, so bile od vseh v zadnjih 3 milijonih let nam najbližje. Kot smo razložili v članku, je bila eksplozija, ki se je zgodila pred 2,3 milijoni let, le 270 do 300 svetlobnih let daleč. Druga eksplozija je bila malenkost dlje, kakih 310 svetlobnih let daleč, in se je zgodila pred 1,5 milijona leti. V bližnji prihodnosti ne pričakujemo nobene eksplozije tako blizu nas. In tako bo še vsaj 10 ali 20 milijonov let, saj ne poznamo nobene zvezde v naši okolici, ki bi bila na tem, da eksplodira. So pa kandidatke za eksplozijo, ki so bolj oddaljene od nas. Betelgeza je tak primer bolj oddaljene zvezde, ki jo bo razneslo v prihodnjih 100 tisoč letih ali milijonu let.

Svetloba eksplozij teh supernov je dosegla Zemljo v vsega 300 letih. Delci, vključno z radioaktivno vrsto železa, ki so ga izvrgle te eksplozije, pa potujejo veliko počasneje kot svetloba. Koliko časa so ti delci potovali do Zemlje? Je morda Zemlja na kakšen način zaščitena pred tako prho delcev iz vesolja?

Podrobni izračuni so pokazali, da so delci supernove do Zemlje potovali kakih 100 tisoč let. Zemljo pred takim pršem električno nabitih delcev ščiti magnetno polje ter veter delcev s Sonca. Radioaktivno železo se je tej zaščiti izognilo, saj se je sprijelo v prašna zrna, ki imajo veliko večjo maso in jih zato magnetno polje ali veter Sončevih delcev ne uspe odkloniti z njihove poti in lahko oblijejo tudi Zemljo. Vse skupaj ni nič nevarnega. Izračunali smo, da se je na vso Zemljo usedlo le kakih 500 ton radioaktivnega železa 60, kar res ni veliko. To potrjuje tudi dejstvo, da smo se morali zelo potruditi, da smo te delce v geoloških plasteh na dnu oceanov sploh odkrili. So pa ti radioaktivni delci železa povsod, našli smo jih tudi v vzorcih kamenin z Lune.

Svetloba teh starodavnih zvezdnih eksplozij je že davno potemnela. Tako o njih sklepamo po zemeljskih usedlinah radioaktivnega železa 60. Morda vašo rekonstrukcijo zvezdnih eksplozij v Sončevi okolici podpirajo še kakšna druga opazovanja?

Ko smo poslali naš rezultat v objavo, smo ugotovili, da naši kolegi, ki analizirajo podatke satelita PAMELA, vidijo nekaj podobnega. Ta satelit skuša zaznati sledi antisnovi v vesolju. Kolegi so ugotovili, da opažajo presežek antiprotonov in pozitronov, to je delcev, ki imajo enako maso, vendar nasprotni električni naboj od običajnih protonov in elektronov. Neodvisno od nas so ugotovili, da ta presežek lahko razložijo kot posledico eksplozije supernove, ki se je zgodila pred kakima 2 milijonoma let na razdalji približno 300 svetlobnih let. Povsem neodvisno in na podlagi drugačnih opazovanj so torej prišli do razlage z eksplozijo ob tako rekoč enakem času in na enaki razdalji. Torej je naša razlaga dobila neodvisno potrditev.


30.12.2019

Znanstveni vrhovi 2019

O fotografiji črne luknje, kvantni premoči, novih arheoloških najdiščih, napredujoči personalizirani medicini in vse bolj natančnih podnebnih napovedih: skozi vse leto smo lahko spremljali prebojne dosežke, ki so spremenili naš pogled na vesolje, zgodovino, tehnologijo in nenazadnje okolje. Prvič smo lahko videli prizore, ki jim človeško oko ni bilo priča še nikoli. Spoznavali smo, česa vsega še ne vemo o zgodovini naše vrste, in se hkrati spraševali, kakšna prihodnost nas čaka. Leto 2019 v znanosti je bilo vznemirljivo, zapuščina odkritij pa bo odmevala tudi v prihodnosti. Pregled znanosti v letu 2019 sta pripravila Maja Ratej in Jan Grilc.


12.12.2019

Nesojena Nobelovka Jocelyn Bell Burnell

Jocelyn Bell Burnell ima za sabo že več kot 50 let dela v astronomiji. Ampak njeno ključno odkritje se je zgodilo čisto na začetku. Prav na točki, ko je šele dobro začela svojo strokovno pot. Tedaj je nepričakovano naletela na nekaj, kar si sprva ni znala razložiti, in je odkritje v šali poimenovala kar »mali zeleni možje, Little Green Men«. Za svoje odkritje bi morala dobiti Nobelovo nagrado, a je ni. Dobil jo je njen mentor, kar je še danes eno od kontroverznih poglavij v zgodovini podeljevanja Nobelovih nagrad. Jocelyn Bell Burnell je v Oxford poklicala Maja Ratej.


05.12.2019

Iskanje zvočnih spominov različnih generacij

Zvoki nekega kraja vzbujajo spomine. Morda tudi tiste najbolj zabrisane in skoraj pozabljene. Prav take spomine iščejo raziskovalci v mednarodnem projektu Sensotra, ki prostovoljce opremijo s kamerami in mikrofoni in jih odpeljejo na sprehod po domačem kraju. Sprašujejo se, kako različne generacije zaznavajo in dojemajo mestno okolje, ki se hitro spreminja. Znanstveniki iz treh držav, podprti s sredstvi Evropskega raziskovalnega sveta, so za potrebe raziskovanja razvili povsem novo metodo, ki jih je pripeljala do nepričakovanih ugotovitev. O tem se pogovarjamo v Frekvenci X, kjer spremljamo najboljšo finsko visokošolsko profesorico s sodelavci iz treh držav na sprehodu po zvočnih spominih človeštva. Gosta: dr. Helmi Järviluoma, Univerza vzhodne Finske, dr. Rajko Muršič, profesor na Oddelku za etnologijo in kulturno antropologijo na ljubljanski Filozofski fakulteti. Oddajo je pripravil Jan Grilc.


28.11.2019

Danuvius je prva opica, ki je "stopila na dve nogi"

Pred 12 milijoni let se je na našem prostoru sprehajal Danuvius. “Danuvius je izjemna najdba, o kateri vemo nekaj dni, ne moremo govoriti, da je pol opica pol človek. To je opica,” trdi dr. Petra Golja z Biotehniške fakultete v Ljubljani. Pa čeprav gre za opico, je ta opica prva, ki je “stopila na dve nogi” – vsaj po do zdaj razpoložljivih podatkih. To je z raziskovalno skupino odkrila glavna raziskovalka paleontologinja dr. Madeline Bohme z nemške univerze v Tübingenu: “Odkritje je bilo veliko presenečenje za vse, saj smo ugotovili, da so kosti bolj podobne človeškim kot tistim velikih opic. Ob našem raziskovanju se je izkazalo, da je ta nova vrsta – Danuvius – hodila dvonožno.” Se je bipedalizem torej razvil dvakrat prej, kot smo doslej domnevali, in v Evropi, ne v Afriki, v kakšnih razmerah je živel Danuvius, bi ga lahko označili za evropsko Lucy …


21.11.2019

"Pozdrav od otrok planeta Zemlje"

Frekvenca X se tokrat podaja na razburljivo potovanje po brezmejnih medzvezdnih in galaktičnih širjavah. Kakšne so bile čisto prve galaktične jasli, kakšne zvezde so nastajale v njih, bo razložila profesorica na Kalifornijski univerzi v Davisu dr. Maruša Bradač. Zavihteli pa smo se tudi na krov legendarnih plovil Voyager, ki s seboj po vesolju nosita skrivnosten zapis o človeški civilizaciji. Kaj je zapisano na zlatih ploščah in kako bi jih lahko razumel nič hudega sluteči vesoljski sprehajalec milijone kilometrov stran, pa bosta pojasnila astrofizik dr. Tomaž Zwitter in glasbeni urednik in pisatelj Jonathan Scott.


14.11.2019

Akademskih 100: Avtonomija na preizkušnji

Ljubljanska univerza je ob ustanovitvi orala ledino v akademski sferi. Po 100 letih se je znašla v položaju, ko si znova postavlja ključna vprašanja glede svoje vloge v družbi. S kakšnim vetrom jadra univerza, ki se po eni strani lahko pohvali z izjemnimi raziskovalnimi dosežki, po drugi strani pa spopada z notranjimi aferami. Sklepna epizoda serije Akademskih 100. *Oddajo pripravljata Maja Ratej in Gašper Andrinek. Izbor glasbe Andrej Karoli. V oddaji so nastopili zaslužni profesor na Fakulteti za elektrotehniko v Ljubljani dr. Rafael Cajhen, profesor mikrobiologije dr. Blaž Stres, novinarka Tina Kristan, sociolog kulture dr. Rastko Močnik, filozof dr. Darko Štrajn, profesor na Fakulteti za strojništvo dr. Matevž Dular, profesor na Fakulteti za računalništvo in informatiko v Ljubljani dr. Ivan Bratko, podoktorska raziskovalka računalništva na Univerzi Stanford dr. Marinka Žitnik.


07.11.2019

Akademskih 100: Od Anke do Anje ... in sto let vmes

Prvi človek, ki je na ljubljanski univerzi doktoriral pred stoletjem, ni bil on, temveč ona. To je bila Anka Mayer Kansky, ena izmed tistih slovenskih izobraženk, ki so utrle pot novim generacijam žensk, da se lahko danes množično izobražujejo. Kdo je bila prva slovenska doktorica, kako se je na ljubljanski univerzi znašla prva učiteljica in zakaj je imela univerza v vsej stoletni zgodovini le eno rektorico? Serija: Akademskih 100 Epizoda: Od Anke do Anje ... in sto let vmes Oddajo pripravljata Maja Ratej in Gašper Andrinek


24.10.2019

Akademskih 100: Veter v jadrih upora

Med drugo svetovno vojno bi lahko ljubljansko univerzo z več gledišč označili za vir upora, legendarni Radio Kričač so na neki način zakrivili študenti elektrotehniške fakultete. Skoraj 20 let pozneje se je zgodila (kulturna) revolucija "baby boom" generacije, ki se je uprla svojim staršem. Zakaj je bila zasedba Filozofske fakultete 40 let pozneje drugačna, sploh pa, kako se je na to odzvala Univerza? Ta hip kaže, da se utegnejo mladi najprej kritično odzvati in se zaradi okoljskih groženj povezati med seboj. Zakaj jih ta tema tako podžiga? Se danes na univerzi še rojevajo progresivne in subverzivne ideje? Serija: Akademskih 100. Druga epizoda: Veter v jadrih upora. Oddajo pripravljata Maja Ratej in Gašper Andrinek


17.10.2019

Akademskih 100: Grad vedam dviga v beli se Ljubljani

Začenjamo miniserijo ob stoletnici ljubljanske univerze. Od že skoraj legendarnih začetkov je šlo skozi njene klopi več sto tisoč študentov, danes pa ji očitajo, da je napreden in liberalen veter, ki je sprva zavel po njej, zatohlo fevdalen, brez moči, da poraja nove sodobne miselne tokove. Kdo so bili izjemni posamezniki, vpeti v okovje te naše osrednje izobraževalne in raziskovalne ustanove, kaj si imajo čez stoleten prepad povedati njeni pionirji in sodobni nasledniki? Oddajo pripravljata Maja Ratej in Gašper Andrinek.


10.10.2019

Nobelove nagrade za leto 2019

Kozmologija in eksoplaneti, razvoj litij-ionskih baterij, pa pomen kisika za delovanje naših celic. To so letošnje prve tri Nobelove nagrade - za fiziko, kemijo in medicino. Zadnjo prav s področja obnašanja celic v telesu, ko se raven kisika v njih zniža. “Zaznavanje kisika ima res velik pomen - od tega, kako delujejo večcelični organizmi, do tega, da ima velik vpliv na različne bolezni, tudi na razvoj in nastanek raka,” pravi dr. Maja Čemažar z Onkološkega inštituta UKC Ljubljana. Z dr. Majo Čemažar, z dr. Andrejo Gomboc z UNG in z dr. Robertom Dominkom s Kemijskega inštituta smo pokomentirali letošnji Nobelov izbor.


03.10.2019

Tri nova radiovedna vprašanja

Ali ima vesolje vonj? Koliko megabajtov podatkov najdemo v prstnem odtisu? Koliko shujšamo med hojo v hribe zaradi pojenjajoče sile težnosti? Na tri čisto resna radiovedna vprašanja, ki so nam jih zastavili poslušalci, Maja Ratej in Jan Grilc s strokovnjaki iščeta čisto resne odgovore. V rubriki Frekvence X Radiovedni!


19.09.2019

IG Nobelove nagrade: Skozi humor se naredi refleksija znanosti

Pica kot zdrav obrok, preklinjanje v avtomobilu, znamke na spolnem udu in raziskava o nakladanju. To so IG Nobelove nagrade, ob razglasitvi katerih se najprej nasmejemo, potem pa zamislimo. Nagrade, ki jih podeljujejo že od leta 1991, omogočijo publiciteto tistim, nekoliko zapostavljenim temam. Koga – denimo – ne bi zanimalo, ali lahko redno uživa pico in ima ob tem manjše tveganje za nastanek določenih bolezni, ali pa, da preklinjanje v avtomobilu ne sprosti, temveč povzroči še več stresa. Z IG Nobelovimi nagrajenci in komentatorjem filozofom in fizikom dr. Sašem Dolencem bomo hodili po avanturističnih poteh razsvetljenskih možganskih hodnikov, ki ob žuborenju idej peljejo v raziskavo o nakladanju, ki je leta 2016 prejela IG Nobelovo nagrado za mir. Več v podkastu, ki sta ga pripravili Maja Stepančič in Uršula Zaletelj.


12.09.2019

Matematika je kot družabne igre, določiš pravila, po katerih igraš

Pitagora in njegovi učenci so verjeli, da je vse v vesolju mogoče matematično izraziti s števili. “Jaz matematiko primerjam z družabnimi igrami, ker tako kot pri igrah tudi pri matematiki nekako določiš pravila, na podlagi katerih boš igral,” pravi Marko Čmrlec, bodoči študent na Cambridgeu, olimpijec, ki je letos dosegel srebrno medaljo na mednarodni olimpijadi v matematiki v Veliki Britaniji. “Če nekdo doseže pohvalo, kaj šele medaljo, je to za tako mladega človeka življenjski uspeh,” pravi Andrej Guštin iz Društva matematikov, fizikov in astronomov Slovenije. Mladi olimpijci – Tevž Lotrič, Ema Mlinar in Marko Čmrlec, ki so poletne počitnice preživeli alternativno … “Je dobra nagrada, da greš za en teden v tujino. Ampak ne samo to, lahko se družiš z ljudmi, ki so ti podobni.” … so bili sogovorniki Frekvence X.


05.09.2019

Poletna znanstvena odkritja

Znanost tudi med poletjem ni na počitnicah. Dogajanje je bilo pestro – od tega, da smo se za las izognili srečanju z asteroidom, do tega, da podatke v tehnološkem svetu že zapisujejo na DNK, da je mikroplastika vse bolj pogosta priloga v naši pitni vodi, pa do tega, da so predniki naše človeške vrste po Evropi hodili že veliko veliko prej, kot se je domnevalo doslej. Nastopajo gigantski papagaj, računalniški čip s 400.000 jedri, robotska roka, ki jo usmerjamo s pomočjo misli, atomska ura, za celo stolpnico velik kup kamenja, štirje milijoni olimpijskih bazenov, planet WASP-38 b, balada biskajskih kitov in partija pokra z računalnikom. Pregled znanstvenega dogajanja sta pripravila Maja Ratej in Jan Grilc.


05.07.2019

Fizik Uroš Seljak med ameriško akademsko elito

V Ljubljani so se v teh dneh v okviru Svetovnega kongresa slovenskih fizikov zbrali naši fiziki in fizičarke, ki so se uveljavili na tujih univerzah in inštitutih. Med njimi slovenski strokovni javnosti predava tudi dr. Uroš Seljak, profesor fizike in sodirektor centra za astrofiziko na Univerzi Kalifornije v Berkleyju, ki je bil pred kratkim kot redni član sprejet v Nacionalno akademijo znanosti v Združenih državah Amerike. Več o tem, kaj mu pomeni včlanitev v najprestižnejšo ameriško znanstveno ustanovo in kako se v svojem profesionalnem življenju posveča iskanju temeljnih značilnosti vesolja s pomočjo kozmoloških opazovanj, pove v petek opoldne.


27.06.2019

Kaj v resnici sporoča serija Černobil

Ste kaj radioaktivni? Ali vas je nemara bolje vprašati, če ste kaj radiofobni? Frekvenca X si je ogledala HBO-jevo serijo Černóbil o največji jedrski nesreči v zgodovini, ki v javnosti sproža številne odzive. Po eni strani je najbolje ocenjena serija na IMDB, po drugi strani se nanjo zgrinjajo številni očitki o zavajanju s podatki. Kaj je res in kaj ne in kako je Černóbil znova potegnil na plano radiofobijo?


20.06.2019

Zelo žalostno bi bilo, če bi se izkazalo, da smo edina inteligentna vrsta v vesolju

Christine Jones Forman in Bill Forman sta zakonca in vrhunska ameriška strokovnjaka na področju rentgenske astronomije. Zaposlena na centru za astrofiziku Harvard Smithsonian sta se z odmevno črno luknjo v galaksiji M87 ukvarjala že dlje časa, ob tem pa več desetletij tako rekoč iz prve roke spremljala napredek na področju rentgenske astronomije. O majhnosti človeka v primerjavi z vesoljem, črnih luknjah, družinskem življenju z astronomijo, zlasti pa o žarkih X v astronomiji več rečemo ta četrtek točno opoldne.


10.06.2019

Frekvenca X na radijskem dvorišču: 50 let po velikem koraku za človeštvo

Siva, pusta, kraterjev polna, a vseeno navdihujoča – Luna. 50 let bo, odkar je Neil Armstrong kot prvi človek pustil svojo sled na našem edinem naravnem satelitu in na Zemljo sporočil tisto zgodovinsko: “To je majhen korak za človeka, a velik za človeštvo.” Pristanek na Luni je pomenil neverjeten napredek, naznanil je, da lahko človek s tehnologijo osvaja tudi prostrano vesolje, in odstrl novo raven tekmovanja med svetovnimi velesilami. Kakšen pečat je v družbi, politiki in znanosti pustil pristanek na Luni 20. julija 1969 in kako danes, petdeset let po tem zgodovinskem dogodku, Luna še preseneča, združuje, ločuje? Ob praznovanju rojstnega dneva Vala 202 smo pripravili javno snemanje Frekvence X na radijskem dvorišču, ki sta ga vodila Maja Stepančič in Jan Grilc. Gosti razprave: astrofizik dr. Tomaž Zwitter biokibernetik dr. Igor Mekjavič ameriški astronavt slovenskih korenin Ronald Šega astronom Andrej Guštin


06.06.2019

Človek 5/5: Samovozeča etika prihodnosti

Morda prihodnost ni še nikoli ponujala toliko nejasnosti in dilem kot danes. Lahko da nas bo umetna inteligenca nepovratno prehitela kot dirkalni avto. In vsak dan ponudila nekaj deset odkritij v rangu Nobelovih nagrad. Nekateri zagovarjajo scenarij, da bo umetna inteligenca celo prevzela nadzor nad človekom. V vsakem primeru bo treba s samovozečo prihodnostjo najti sožitje in jo pametno zavirati na mejnih območjih. A nobena tehnologija ni dobra ali slaba sama po sebi, pomembno je, kako jo uporabljamo ljudje, pomembne so družbene okoliščine, politične odločitve. Bi torej ob razvoju umetne inteligence potrebovali čim več ali čim manj regulacije, bi se morali vse večje prisotnosti umetne inteligence bati ali se je veseliti? Kje so realne in kje znanstvenofantastične meje? V epilogu serije Quo vadis, človek? o etiki razvoja in samovozečih dilemah človeka prihodnosti. Od Zemlje do vesolja. Od Rdeče kapice do robota. O tem, kako bi lahko tehnologije tudi pomagale pri reševanju okolja. Razmišljajo sogovorniki različnih strok. Avtorji: Luka Hvalc, Hana Hawlina, Jan Grilc


29.05.2019

Človek 4/5: Algoritmi demokracije

“Vojna je mir. Svoboda je suženjstvo. Nevednost je moč.” Tako je pred natanko 70 leti George Orwell zapisal v romanu 1984. Je imel prav? Možnost večje (tehnološke) izbire ne pomeni nujno svetlejše prihodnosti. Niti v osebnem niti v družbenem smislu. Veliko podatkovje, družabna omrežja in algoritmi spreminjajo demokracijo in na novo definirajo pravila igre. Ključno bo najti konsenz okrog uporabe umetne inteligence in ohranitve ideje demokracije. Hladna vojna je preteklost, družbe prihodnosti bodo poleg podnebnih sprememb ogrožale informacijske in trgovinske krize, morebitne zlorabe orožja, ki ga bo upravljala umetna inteligenca. Kako bo z varnostjo, bo država namesto vojakov imela polno “kasarno” vrhunskih hekerjev, strokovnjakov za algoritme in robotskih psihiatrov? Osrednja gosta 4. dela serije Quo vadis, človek?! sta filozofinja Renata Salecl in obramboslovec Uroš Svete. Avtorji: Luka Hvalc, Hana Hawlina in Jan Grilc


Stran 11 od 34
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov