Obvestila

Ni obvestil.

Obvestila so izklopljena . Vklopi.

Kazalo

Predlogi

Ni najdenih zadetkov.


Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

Rezultati iskanja

MMC RTV 365 Radio Televizija mojRTV × Menu

Zvezdne eksplozije, ki so jih videli prvi ljudje

21.04.2016

Že dolgo vemo, da je Zemlja nastala iz snovi, ki so jo supernove bruhnile v prostor pred skoraj petimi milijardami let. Doslej ni bilo zabeleženo, ali je zvezdni prah sedal na Zemljo tudi pozneje. Zdaj vemo, da so nebo pred tremi milijoni let razsvetljevale spektakularne zvezdne eksplozije supernov v okolici Sonca, kakih 200 ali 300 tisoč let pozneje pa se je na Zemljo usedel tudi njihov radioaktivni železov prah. Kako je uspelo zaznati sledi bližnje eksplozije supernove in kaj pomeni odkritje, da nekateri atomi izvirajo iz zvezdnih eksplozij v Sončevi okolici, boste zvedeli v novi izdaji Frekvence X.

Zemlja je stara skoraj 5 milijard let in je nastala iz snovi, ki so jo pred tem bruhnile v prostor zvezdne eksplozije z imenom supernove. Ali so se take eksplozije dogajale tudi pozneje, nismo vedeli, saj se je zdelo, da taki dogodki na Zemlji niso bili zabeleženi. Ta mesec se je to spremenilo. Postalo je jasno, da se je prah okoliških zvezdnih eksplozij na Zemljo usedal še nedavno.

V nadaljevanju objavljamo pogovor z dr. Antonom Wallnerjem z avstralske nacionalne univerze v Canberri in dr. Dieterjem Breitschwertom s tehniške univerze v Münchnu, vodjema dveh raziskav, ki sta bili ta mesec objavljeni v prestižni reviji Nature.

Pogovor z dr. Antonom Wallnerjem

Dr. Wallner, atomsko jedro železa je po navadi sestavljeno iz 56 delcev, 26 je protonov in 30 nevtronov. Nedavno pa ste preučevali železova jedra s 4 dodatnimi nevtroni. Zakaj je to “železo 60” zanimivo?

Železo 60 je posebna vrsta železa. To atomsko jedro ni stabilno. Je radioaktivno in razpada z razpolovnim časom 2,5 milijona let v drug stabilen element. Ker je Zemlja veliko starejša, je vse prvotno železo 60 do zdaj že razpadlo. Običajno stabilno železo obstaja kjerkoli na Zemlji, železo 60 pa ne. Če ga torej najdemo kje v zemeljskih plasteh, vemo, da je moral priti iz vesolja. In ker je radioaktivno, vemo, da je moralo to železo nastati v zadnjih nekaj milijonih let, saj bi drugače že razpadlo. Železo 60 je tako časovno označeno. Če bi železo 60 prišlo na Zemljo pred 10 ali 15 milijoni let, bi do danes že skoraj povsem razpadlo in ga na Zemlji ne bi mogli zaznati. Nekaj malega železa 60 nastaja tudi v meteoritih in mikrometeoritih, ki imajo izvor drugje v Osončju. Ker ti delci stalno bombardirajo Zemljo, so lahko odgovorni za nekaj železa 60 na Zemlji. Vendar so daleč najpomembnejši vir železa 60 zelo masivne zvezde, v katerih to železo nastane tik preden take zvezde eksplodirajo kot supernove. Med eksplozijo supernove zvezda izvrže v vesolje večino svoje snovi, z njo pa tudi pravkar nastala radioaktivna jedra, med katerimi je tudi železo 60. Če se tak dogodek zgodi relativno blizu našega Osončja in s tem Zemlje, obstaja možnost, da nekaj te snovi najde pot do Zemlje, se sčasoma usede nanjo in postane sestavni del geoloških plasti.

Železo s štirimi dodatnimi nevtroni je tako redko, da so mislili, da v naravi sploh ne nastopa. Kako vam uspe zaznati njegove sledi v zemeljskih plasteh in določiti njegovo pogostost?

Preučujemo geološke plasti in v njih iščemo to zunajzemeljsko železo 60. Geološke plasti se nalagajo zelo počasi. V našem primeru je to trajalo milijone let. Ker rastejo počasi, lahko iz njih izluščimo časovni razvoj. Sestavimo lahko časovno zaporedje, kronologijo, kjer za vsako plast vemo njeno starost. Ta ideja ni nova, pred več kot dvajsetimi leti so že govorili o možnosti iskanja atomskih jeder, ki so nastala ob eksplozijah supernov v naši okolici. Pionirsko delo so opravili na tehniški univerzi v Münchnu, kjer so prvi razvili tehnike za odkrivanje takih drobnih sledi železa 60 na Zemlji. Pri tem moramo biti sposobni prešteti vsak atom posebej, saj je v običajnem vzorcu le po nekaj atomov železa 60. Železo 60 smo torej morali ločiti od več tisočbilijonkrat bolj pogostega neradioaktivnega železa, seveda pa smo ga morali ločiti tudi od drugih kemičnih elementov v preiskovanih geoloških plasteh. Kolegi v Helmholtzovem centru v Dresdnu v Nemčiji in na univerzi v Tokiu so s kemičnim ločevanjem iz vzorcev zbrali vse železo. Ker pa so atomi železa 60 nekoliko masivnejši od običajnega železa, smo njihovo vsebnost lahko določili s tehniko, ki ji pravimo rentgenska masna spektrometrija. To je v osnovi isti način kot ga uporabljamo za določitev starosti vzorcev z radiokarbonskim datiranjem. Ker za določitev navzočnosti vsega nekaj atomov železa 60 potrebujemo izjemno občutljivost, smo uporabili eno od le dveh naprav na svetu, ki to zmoreta. V našem je to pospeševalnik delcev, ki ga imamo na avstralski nacionalni univerzi v Canberri, druga taka naprava pa je v Münchnu.

Dr. Wallner, vaš nedavni članek v reviji Nature pokaže, da je v dveh plasteh na Zemlji železa 60 veliko več kot v drugih plasteh. Kaj je vzrok za to?

Navzočnost železa 60 so pred kakim desetletjem zaznali že kolegi v Münchnu. Torej v tem nismo prvi. Že oni so pokazali, da je v plasti, ki je stara med 2 in 3 milijoni let, več te vrste železa. To nas je vzpodbudilo, da smo začeli s širše zastavljenim projektom. Zbrali smo različne tipe vzorcev iz dna Tihega oceana, Indijskega oceana in Atlantika. S skupaj 8 različnimi vzorci smo prvi sestavili globalno sliko navzočnosti železa 60 za obdobje zadnjih 10 milijonov let. Poleg potrditve prejšnjih dognanj smo ugotovili, da je obnašanje železa 60 povsod po svetu enako, časovne spremembe navzočnosti železa 60 pa so bile tudi zelo jasno vidne. Torej izvor tega železa nikakor niso mogli biti meteoriti, ampak je moralo nastati ob ekplozijah zvezd zunaj našega Osončja. Dodatno železo 60 smo zaznali v dveh plasteh, ena je bila starosti med milijonom in pol in tremi milijoni let, druga pa starosti med 6,5 in 8,5 milijoni let. V obeh primerih to železo prihaja iz prostora med zvezdami, najverjetneje pa so ga tja izbruhnile eksplozije supernov. Torej vemo, da je v okolici Sonca v tem obdobju eksplodiralo več supernov. To se ujema z našimi predstavami o dogajanju v naši galaktični okolici, z našim odkritjem pa smo to sliko tudi potrdili. Ko smo ocenili, koliko železa 60 nastane ob eksploziji supernove, smo po številu najdenih atomov lahko rekli tudi, da so se te eksplozije zgodile na razdalji, za katero svetloba potrebuje od 200 do 300 let.

Bližnja eksplozija supernove, ki je odgovorna za dodatno železo 60, je bila gotovo videti spektakurno.  Je bila tudi nevarna za življenje na Zemlji?

Govorimo o eksploziji, ki je tako daleč, da svetloba za pot do Zemlje potrebuje 200 ali 300 let. Zato ne verjamemo, da je taka eksplozija imela kakšne neposredne posledice za življenje na Zemlji. Če bi bila ta eksplozija supernove bližje, na primer le 50 ali 80 let potovanja svetlobe daleč, bi bilo drugače. V našem primeru pa je mogoče, da je bilo nekaj več kozmičnega sevanja, kar bi morda lahko pripomoglo k več oblakom v zemeljski atmosferi in posledično spremembi temperature in morda tudi klime na Zemlji. Zanimivo se je v istem času, kot je na Zemljo padalo radioaktivno železo 60, na Zemlji spremenila tudi temperatura. Pred približno 3 milijoni let se je ohladilo, kar je bilo pomembno tudi za razvoj človeka. Tudi pred 8 milijoni let ob drugem maksimumu železa 60 imamo spremembo zemeljske klime. Seveda pa še nismo prepričani, ali sta ti sovpadanji zgolj naključji, ali pa je med usedanjem železa 60 in klimatskimi spremembami res kakšna vzročna povezava. Zagotovo bo to predmet raziskav v bližnji prihodnosti.

Pogovor z dr. Dieterjem Breitschwerdtom

Prof. Breitschwerdt, ko gledamo nočno nebo, se zdi prostor med nami in zvezdami popolnoma prazen. Vendar to ni povsem res. Kaj lahko najdemo v okolici Sonca na razdaljah do nekaj sto let potovanja svetlobe?

V prostoru med zvezdami je razredčena medzvezdna snov v obliki plina, plazme in prahu, iz nje pa lahko nastajajo tudi nove zvezde. V okolici našega Sonca je podobno. Tu prevladuje predvsem močno segret in zelo razredčen plin v obliki plazme, ki ima temperaturo od nekaj sto tisoč do milijonov stopinj. Ta vroč plin imenujemo lokalni mehurček in je nastal kot posledica eksplozij supernov v okolici našega Sonca na oddaljenosti do približno 300 let potovanja svetlobe.

V članku, ki ste ga objavili v reviji Nature, pravite, da so naši človeški predniki lahko opazovali dve zvezdni eksploziji v okolici Sonca. Lahko poveste kaj, kje in kdaj sta se ti eksploziji zgodili?

Izračunali smo, da je moralo eksplodirati kakih 16 zvezd. In vse te eksplozije je bilo mogoče videti tudi z Zemlje. Dve najbližji sta se zgodili na razdalji med 300 in 325 svetlobnih let. Eksplodirali sta pred 2,3 in pred 1,5 milijoni let. Ti dve eksploziji sta bili izjemni. Kadar eksplodira supernova, je namreč za kratek čas videti tako svetla kot vse stotine milijard zvezd v naši Galaksiji skupaj. Videti je tako svetla kot polna Luna zbrana v točko, več tednov bi jo zagotovo bilo mogoče videti tudi podnevi.

Kaj bi torej na nebu videli naši predniki?

Tedaj bi eno noč na nebu videli zvezde kot po navadi, s prostim očesom seveda tudi tiste, ki so od nas oddaljene 300 svetlobnih let. Naslednjo noč pa bi videli zaslepljivo eksplozijo supernove. Ta se je seveda v resnici zgodila že pred 300 leti, vendar je njena svetloba toliko časa potrebovala do Zemlje. To noč bi torej namesto običajne nevpadljive zvezdice tam opazili izjemno svetlo piko, ki bi svetila toliko kot polna luna. Astronomi seveda vedno upamo, da se bo kaj takega zgodilo v obdobju našega življenja, vendar je bil zadnji tak srečnež Johannes Kepler, ki je tako eksplozijo opazoval leta 1608.

Pričakujemo kaj takega v bližnji prihodnosti?

Obstajajo napovedi, vendar so vse zvezde, ki bi lahko eksplodirale, veliko dlje od nas. Eksplozije, ki smo jih obravnavali, so bile od vseh v zadnjih 3 milijonih let nam najbližje. Kot smo razložili v članku, je bila eksplozija, ki se je zgodila pred 2,3 milijoni let, le 270 do 300 svetlobnih let daleč. Druga eksplozija je bila malenkost dlje, kakih 310 svetlobnih let daleč, in se je zgodila pred 1,5 milijona leti. V bližnji prihodnosti ne pričakujemo nobene eksplozije tako blizu nas. In tako bo še vsaj 10 ali 20 milijonov let, saj ne poznamo nobene zvezde v naši okolici, ki bi bila na tem, da eksplodira. So pa kandidatke za eksplozijo, ki so bolj oddaljene od nas. Betelgeza je tak primer bolj oddaljene zvezde, ki jo bo razneslo v prihodnjih 100 tisoč letih ali milijonu let.

Svetloba eksplozij teh supernov je dosegla Zemljo v vsega 300 letih. Delci, vključno z radioaktivno vrsto železa, ki so ga izvrgle te eksplozije, pa potujejo veliko počasneje kot svetloba. Koliko časa so ti delci potovali do Zemlje? Je morda Zemlja na kakšen način zaščitena pred tako prho delcev iz vesolja?

Podrobni izračuni so pokazali, da so delci supernove do Zemlje potovali kakih 100 tisoč let. Zemljo pred takim pršem električno nabitih delcev ščiti magnetno polje ter veter delcev s Sonca. Radioaktivno železo se je tej zaščiti izognilo, saj se je sprijelo v prašna zrna, ki imajo veliko večjo maso in jih zato magnetno polje ali veter Sončevih delcev ne uspe odkloniti z njihove poti in lahko oblijejo tudi Zemljo. Vse skupaj ni nič nevarnega. Izračunali smo, da se je na vso Zemljo usedlo le kakih 500 ton radioaktivnega železa 60, kar res ni veliko. To potrjuje tudi dejstvo, da smo se morali zelo potruditi, da smo te delce v geoloških plasteh na dnu oceanov sploh odkrili. So pa ti radioaktivni delci železa povsod, našli smo jih tudi v vzorcih kamenin z Lune.

Svetloba teh starodavnih zvezdnih eksplozij je že davno potemnela. Tako o njih sklepamo po zemeljskih usedlinah radioaktivnega železa 60. Morda vašo rekonstrukcijo zvezdnih eksplozij v Sončevi okolici podpirajo še kakšna druga opazovanja?

Ko smo poslali naš rezultat v objavo, smo ugotovili, da naši kolegi, ki analizirajo podatke satelita PAMELA, vidijo nekaj podobnega. Ta satelit skuša zaznati sledi antisnovi v vesolju. Kolegi so ugotovili, da opažajo presežek antiprotonov in pozitronov, to je delcev, ki imajo enako maso, vendar nasprotni električni naboj od običajnih protonov in elektronov. Neodvisno od nas so ugotovili, da ta presežek lahko razložijo kot posledico eksplozije supernove, ki se je zgodila pred kakima 2 milijonoma let na razdalji približno 300 svetlobnih let. Povsem neodvisno in na podlagi drugačnih opazovanj so torej prišli do razlage z eksplozijo ob tako rekoč enakem času in na enaki razdalji. Torej je naša razlaga dobila neodvisno potrditev.


Frekvenca X

674 epizod


Poljudna oddaja, v kateri vas popeljemo med vznemirljiva vprašanja in odkritja moderne znanosti, s katerimi se raziskovalci v tem trenutku spopadajo v svojih glavah in laboratorijih.

Zvezdne eksplozije, ki so jih videli prvi ljudje

21.04.2016

Že dolgo vemo, da je Zemlja nastala iz snovi, ki so jo supernove bruhnile v prostor pred skoraj petimi milijardami let. Doslej ni bilo zabeleženo, ali je zvezdni prah sedal na Zemljo tudi pozneje. Zdaj vemo, da so nebo pred tremi milijoni let razsvetljevale spektakularne zvezdne eksplozije supernov v okolici Sonca, kakih 200 ali 300 tisoč let pozneje pa se je na Zemljo usedel tudi njihov radioaktivni železov prah. Kako je uspelo zaznati sledi bližnje eksplozije supernove in kaj pomeni odkritje, da nekateri atomi izvirajo iz zvezdnih eksplozij v Sončevi okolici, boste zvedeli v novi izdaji Frekvence X.

Zemlja je stara skoraj 5 milijard let in je nastala iz snovi, ki so jo pred tem bruhnile v prostor zvezdne eksplozije z imenom supernove. Ali so se take eksplozije dogajale tudi pozneje, nismo vedeli, saj se je zdelo, da taki dogodki na Zemlji niso bili zabeleženi. Ta mesec se je to spremenilo. Postalo je jasno, da se je prah okoliških zvezdnih eksplozij na Zemljo usedal še nedavno.

V nadaljevanju objavljamo pogovor z dr. Antonom Wallnerjem z avstralske nacionalne univerze v Canberri in dr. Dieterjem Breitschwertom s tehniške univerze v Münchnu, vodjema dveh raziskav, ki sta bili ta mesec objavljeni v prestižni reviji Nature.

Pogovor z dr. Antonom Wallnerjem

Dr. Wallner, atomsko jedro železa je po navadi sestavljeno iz 56 delcev, 26 je protonov in 30 nevtronov. Nedavno pa ste preučevali železova jedra s 4 dodatnimi nevtroni. Zakaj je to “železo 60” zanimivo?

Železo 60 je posebna vrsta železa. To atomsko jedro ni stabilno. Je radioaktivno in razpada z razpolovnim časom 2,5 milijona let v drug stabilen element. Ker je Zemlja veliko starejša, je vse prvotno železo 60 do zdaj že razpadlo. Običajno stabilno železo obstaja kjerkoli na Zemlji, železo 60 pa ne. Če ga torej najdemo kje v zemeljskih plasteh, vemo, da je moral priti iz vesolja. In ker je radioaktivno, vemo, da je moralo to železo nastati v zadnjih nekaj milijonih let, saj bi drugače že razpadlo. Železo 60 je tako časovno označeno. Če bi železo 60 prišlo na Zemljo pred 10 ali 15 milijoni let, bi do danes že skoraj povsem razpadlo in ga na Zemlji ne bi mogli zaznati. Nekaj malega železa 60 nastaja tudi v meteoritih in mikrometeoritih, ki imajo izvor drugje v Osončju. Ker ti delci stalno bombardirajo Zemljo, so lahko odgovorni za nekaj železa 60 na Zemlji. Vendar so daleč najpomembnejši vir železa 60 zelo masivne zvezde, v katerih to železo nastane tik preden take zvezde eksplodirajo kot supernove. Med eksplozijo supernove zvezda izvrže v vesolje večino svoje snovi, z njo pa tudi pravkar nastala radioaktivna jedra, med katerimi je tudi železo 60. Če se tak dogodek zgodi relativno blizu našega Osončja in s tem Zemlje, obstaja možnost, da nekaj te snovi najde pot do Zemlje, se sčasoma usede nanjo in postane sestavni del geoloških plasti.

Železo s štirimi dodatnimi nevtroni je tako redko, da so mislili, da v naravi sploh ne nastopa. Kako vam uspe zaznati njegove sledi v zemeljskih plasteh in določiti njegovo pogostost?

Preučujemo geološke plasti in v njih iščemo to zunajzemeljsko železo 60. Geološke plasti se nalagajo zelo počasi. V našem primeru je to trajalo milijone let. Ker rastejo počasi, lahko iz njih izluščimo časovni razvoj. Sestavimo lahko časovno zaporedje, kronologijo, kjer za vsako plast vemo njeno starost. Ta ideja ni nova, pred več kot dvajsetimi leti so že govorili o možnosti iskanja atomskih jeder, ki so nastala ob eksplozijah supernov v naši okolici. Pionirsko delo so opravili na tehniški univerzi v Münchnu, kjer so prvi razvili tehnike za odkrivanje takih drobnih sledi železa 60 na Zemlji. Pri tem moramo biti sposobni prešteti vsak atom posebej, saj je v običajnem vzorcu le po nekaj atomov železa 60. Železo 60 smo torej morali ločiti od več tisočbilijonkrat bolj pogostega neradioaktivnega železa, seveda pa smo ga morali ločiti tudi od drugih kemičnih elementov v preiskovanih geoloških plasteh. Kolegi v Helmholtzovem centru v Dresdnu v Nemčiji in na univerzi v Tokiu so s kemičnim ločevanjem iz vzorcev zbrali vse železo. Ker pa so atomi železa 60 nekoliko masivnejši od običajnega železa, smo njihovo vsebnost lahko določili s tehniko, ki ji pravimo rentgenska masna spektrometrija. To je v osnovi isti način kot ga uporabljamo za določitev starosti vzorcev z radiokarbonskim datiranjem. Ker za določitev navzočnosti vsega nekaj atomov železa 60 potrebujemo izjemno občutljivost, smo uporabili eno od le dveh naprav na svetu, ki to zmoreta. V našem je to pospeševalnik delcev, ki ga imamo na avstralski nacionalni univerzi v Canberri, druga taka naprava pa je v Münchnu.

Dr. Wallner, vaš nedavni članek v reviji Nature pokaže, da je v dveh plasteh na Zemlji železa 60 veliko več kot v drugih plasteh. Kaj je vzrok za to?

Navzočnost železa 60 so pred kakim desetletjem zaznali že kolegi v Münchnu. Torej v tem nismo prvi. Že oni so pokazali, da je v plasti, ki je stara med 2 in 3 milijoni let, več te vrste železa. To nas je vzpodbudilo, da smo začeli s širše zastavljenim projektom. Zbrali smo različne tipe vzorcev iz dna Tihega oceana, Indijskega oceana in Atlantika. S skupaj 8 različnimi vzorci smo prvi sestavili globalno sliko navzočnosti železa 60 za obdobje zadnjih 10 milijonov let. Poleg potrditve prejšnjih dognanj smo ugotovili, da je obnašanje železa 60 povsod po svetu enako, časovne spremembe navzočnosti železa 60 pa so bile tudi zelo jasno vidne. Torej izvor tega železa nikakor niso mogli biti meteoriti, ampak je moralo nastati ob ekplozijah zvezd zunaj našega Osončja. Dodatno železo 60 smo zaznali v dveh plasteh, ena je bila starosti med milijonom in pol in tremi milijoni let, druga pa starosti med 6,5 in 8,5 milijoni let. V obeh primerih to železo prihaja iz prostora med zvezdami, najverjetneje pa so ga tja izbruhnile eksplozije supernov. Torej vemo, da je v okolici Sonca v tem obdobju eksplodiralo več supernov. To se ujema z našimi predstavami o dogajanju v naši galaktični okolici, z našim odkritjem pa smo to sliko tudi potrdili. Ko smo ocenili, koliko železa 60 nastane ob eksploziji supernove, smo po številu najdenih atomov lahko rekli tudi, da so se te eksplozije zgodile na razdalji, za katero svetloba potrebuje od 200 do 300 let.

Bližnja eksplozija supernove, ki je odgovorna za dodatno železo 60, je bila gotovo videti spektakurno.  Je bila tudi nevarna za življenje na Zemlji?

Govorimo o eksploziji, ki je tako daleč, da svetloba za pot do Zemlje potrebuje 200 ali 300 let. Zato ne verjamemo, da je taka eksplozija imela kakšne neposredne posledice za življenje na Zemlji. Če bi bila ta eksplozija supernove bližje, na primer le 50 ali 80 let potovanja svetlobe daleč, bi bilo drugače. V našem primeru pa je mogoče, da je bilo nekaj več kozmičnega sevanja, kar bi morda lahko pripomoglo k več oblakom v zemeljski atmosferi in posledično spremembi temperature in morda tudi klime na Zemlji. Zanimivo se je v istem času, kot je na Zemljo padalo radioaktivno železo 60, na Zemlji spremenila tudi temperatura. Pred približno 3 milijoni let se je ohladilo, kar je bilo pomembno tudi za razvoj človeka. Tudi pred 8 milijoni let ob drugem maksimumu železa 60 imamo spremembo zemeljske klime. Seveda pa še nismo prepričani, ali sta ti sovpadanji zgolj naključji, ali pa je med usedanjem železa 60 in klimatskimi spremembami res kakšna vzročna povezava. Zagotovo bo to predmet raziskav v bližnji prihodnosti.

Pogovor z dr. Dieterjem Breitschwerdtom

Prof. Breitschwerdt, ko gledamo nočno nebo, se zdi prostor med nami in zvezdami popolnoma prazen. Vendar to ni povsem res. Kaj lahko najdemo v okolici Sonca na razdaljah do nekaj sto let potovanja svetlobe?

V prostoru med zvezdami je razredčena medzvezdna snov v obliki plina, plazme in prahu, iz nje pa lahko nastajajo tudi nove zvezde. V okolici našega Sonca je podobno. Tu prevladuje predvsem močno segret in zelo razredčen plin v obliki plazme, ki ima temperaturo od nekaj sto tisoč do milijonov stopinj. Ta vroč plin imenujemo lokalni mehurček in je nastal kot posledica eksplozij supernov v okolici našega Sonca na oddaljenosti do približno 300 let potovanja svetlobe.

V članku, ki ste ga objavili v reviji Nature, pravite, da so naši človeški predniki lahko opazovali dve zvezdni eksploziji v okolici Sonca. Lahko poveste kaj, kje in kdaj sta se ti eksploziji zgodili?

Izračunali smo, da je moralo eksplodirati kakih 16 zvezd. In vse te eksplozije je bilo mogoče videti tudi z Zemlje. Dve najbližji sta se zgodili na razdalji med 300 in 325 svetlobnih let. Eksplodirali sta pred 2,3 in pred 1,5 milijoni let. Ti dve eksploziji sta bili izjemni. Kadar eksplodira supernova, je namreč za kratek čas videti tako svetla kot vse stotine milijard zvezd v naši Galaksiji skupaj. Videti je tako svetla kot polna Luna zbrana v točko, več tednov bi jo zagotovo bilo mogoče videti tudi podnevi.

Kaj bi torej na nebu videli naši predniki?

Tedaj bi eno noč na nebu videli zvezde kot po navadi, s prostim očesom seveda tudi tiste, ki so od nas oddaljene 300 svetlobnih let. Naslednjo noč pa bi videli zaslepljivo eksplozijo supernove. Ta se je seveda v resnici zgodila že pred 300 leti, vendar je njena svetloba toliko časa potrebovala do Zemlje. To noč bi torej namesto običajne nevpadljive zvezdice tam opazili izjemno svetlo piko, ki bi svetila toliko kot polna luna. Astronomi seveda vedno upamo, da se bo kaj takega zgodilo v obdobju našega življenja, vendar je bil zadnji tak srečnež Johannes Kepler, ki je tako eksplozijo opazoval leta 1608.

Pričakujemo kaj takega v bližnji prihodnosti?

Obstajajo napovedi, vendar so vse zvezde, ki bi lahko eksplodirale, veliko dlje od nas. Eksplozije, ki smo jih obravnavali, so bile od vseh v zadnjih 3 milijonih let nam najbližje. Kot smo razložili v članku, je bila eksplozija, ki se je zgodila pred 2,3 milijoni let, le 270 do 300 svetlobnih let daleč. Druga eksplozija je bila malenkost dlje, kakih 310 svetlobnih let daleč, in se je zgodila pred 1,5 milijona leti. V bližnji prihodnosti ne pričakujemo nobene eksplozije tako blizu nas. In tako bo še vsaj 10 ali 20 milijonov let, saj ne poznamo nobene zvezde v naši okolici, ki bi bila na tem, da eksplodira. So pa kandidatke za eksplozijo, ki so bolj oddaljene od nas. Betelgeza je tak primer bolj oddaljene zvezde, ki jo bo razneslo v prihodnjih 100 tisoč letih ali milijonu let.

Svetloba eksplozij teh supernov je dosegla Zemljo v vsega 300 letih. Delci, vključno z radioaktivno vrsto železa, ki so ga izvrgle te eksplozije, pa potujejo veliko počasneje kot svetloba. Koliko časa so ti delci potovali do Zemlje? Je morda Zemlja na kakšen način zaščitena pred tako prho delcev iz vesolja?

Podrobni izračuni so pokazali, da so delci supernove do Zemlje potovali kakih 100 tisoč let. Zemljo pred takim pršem električno nabitih delcev ščiti magnetno polje ter veter delcev s Sonca. Radioaktivno železo se je tej zaščiti izognilo, saj se je sprijelo v prašna zrna, ki imajo veliko večjo maso in jih zato magnetno polje ali veter Sončevih delcev ne uspe odkloniti z njihove poti in lahko oblijejo tudi Zemljo. Vse skupaj ni nič nevarnega. Izračunali smo, da se je na vso Zemljo usedlo le kakih 500 ton radioaktivnega železa 60, kar res ni veliko. To potrjuje tudi dejstvo, da smo se morali zelo potruditi, da smo te delce v geoloških plasteh na dnu oceanov sploh odkrili. So pa ti radioaktivni delci železa povsod, našli smo jih tudi v vzorcih kamenin z Lune.

Svetloba teh starodavnih zvezdnih eksplozij je že davno potemnela. Tako o njih sklepamo po zemeljskih usedlinah radioaktivnega železa 60. Morda vašo rekonstrukcijo zvezdnih eksplozij v Sončevi okolici podpirajo še kakšna druga opazovanja?

Ko smo poslali naš rezultat v objavo, smo ugotovili, da naši kolegi, ki analizirajo podatke satelita PAMELA, vidijo nekaj podobnega. Ta satelit skuša zaznati sledi antisnovi v vesolju. Kolegi so ugotovili, da opažajo presežek antiprotonov in pozitronov, to je delcev, ki imajo enako maso, vendar nasprotni električni naboj od običajnih protonov in elektronov. Neodvisno od nas so ugotovili, da ta presežek lahko razložijo kot posledico eksplozije supernove, ki se je zgodila pred kakima 2 milijonoma let na razdalji približno 300 svetlobnih let. Povsem neodvisno in na podlagi drugačnih opazovanj so torej prišli do razlage z eksplozijo ob tako rekoč enakem času in na enaki razdalji. Torej je naša razlaga dobila neodvisno potrditev.


22.05.2019

Človek 3/5: Roboti kujemo bodočnost

Papež Frančišek je v Vatikanu zbral največje svetovne strokovnjake na posvetu o robotiki in umetni inteligenci. Humanoidni roboti zagotovo še lep čas ne bodo nadomestili katoliških duhovnikov in vernikov, medtem pa na Japonskem android Mindar že pomaga pri molitvah v budističnem templju. Dejstvo je, da tehnologija ne more popolnoma zamenjati človeškega dela, a bo umetna inteligenca spremenila tudi najbolj tradicionalne poklice, od zdravnika do duhovnika. Bo direktor podjetja za svojega namestnika kmalu imenoval robota? Kateri poklici bodo z razvojem umetne inteligence izginili, kateri se bodo spremenili? Skrajnosti razmerja človek-umetna inteligenca ilustrira tudi vstop robotov v intimne odnose, obstajajo celo že bordeli z robotskimi prostitutkami, za uporabo katerih je potrebno plačati zavarovanje. Roboti so pogosto bolj zaščiteni od ljudi, celo državljanstvo so jim že podelili. Na širšo družbo pa bo imel v bližnji prihodnosti še večji vpliv razvoj industrijske robotike, ki že predstavlja eno tretjino svetovnega trga in se največ uporablja v avtomobilski industriji. Največ robotov imajo v operativni rabi na Japonskem, Kitajskem in v ZDA. V Sloveniji je to razmerje 144 robotov na 10 tisoč zaposlenih, kar je precej nad evropskim povprečjem. Poleg tega smo tudi pri nas dobili tovarno industrijskih robotov, ki ima v Kočevju zmogljivost proizvodnje 10 tisoč robotov na leto. Japonska Yaskawa in slovenski Laibach sta združila moči pri posebnem umetniško-industrijskem projektu “Mi kujemo bodočnost.” Morda bodo Trbovlje celo prvo mesto v Sloveniji z robotskimi občani … Podrobno v 3. delu serije Quo vadis, človek?! Avtorja: Luka Hvalc in Hana Hawlina


15.05.2019

Človek 2/5: Okolje in hrana prihodnosti

Pridelava hrane zelo obremenjuje okolje. Analize kažejo, da povprečna letna poraba govedine samo enega Američana prispeva k onesnaženju s toplogrednimi plini toliko kot dobrih dva tisoč kilometrov vožnje z avtomobilom. Do leta 2050 se bo število prebivalstva na Zemlji povečalo na devet milijard ljudi, kar bo podvojilo povpraševanje po hrani. Je sploh mogoče, da nahranimo svet in hkrati ohranimo naš planet? Ob hitri rasti prebivalstva in prekomerni porabi naravnih virov, smo priča izraziti spremenljivosti podnebja. Vročinski valovi bodo v prihodnosti še pogostejši in daljši, več bo padavin, gladina morja se bo dvigovala. Škoda zaradi poplav, suš in vremenskih neurij v svetu strmo narašča in se bo še povečevala. Kaj in kako lahko spremenimo? Kakšne so prehrambene in okoljske alternative? Od avokadov na Instagramu, podnebnih štrajkov, okoljskih kiborgov, do žuželčjih burgerjev in laboratorijskega mesa. Quo vadis, človek?! Avtorja: Luka Hvalc in Hana Hawlina


03.05.2019

Človek 1/5: Selfi naše prihodnosti

Bo človek 2.0 živel v globalni tehno diktaturi ali se bo od urbanizacije vrnil nazaj k naravi? Raziskujemo, kam nas bodo pripeljali neznane poti umetne inteligence, kibernetike, vesoljskih tehnologij, pa spremenjeno prehranjevanje, omejitve okolja, nove oblike komunikacije … Kako bomo delovali kot družba, kakšni bodo odnosi med ljudmi s psihološkega in sociološkega vidika, kako bomo organizirani pravno in politično, bo tudi umetnost v domeni umetne inteligence? V uvodnem delu nove serije Frekvence X skušamo posneti selfi, no, pravzaprav skupinsko sliko naše prihodnosti, prihodnosti naših družin, prijateljev … Naše prihodnosti. Quo vadis, človek?! Avtorja: Luka Hvalc in Hana Hawlina


25.04.2019

Osupljiva prva fotografija črne luknje

Frekvenca X se ozira proti najbolj vroči temi v vesolju – proti črni luknji! Človeštvo si jo je pred kratkim prvič lahko ogledalo na fotografiji in podoba črnega kroga z ognjenim obročem je osupnila znanstvenike in laike. Fotografija črnega kroga z ognjenim obročem velja za najnatančnejšo fotografijo, kar jih je kdaj naredilo človeštvo, saj gre za takšno preciznost, kot če bi skušali številko na kovancu, ki bi ga nekdo držal v New Yorku, razbrati iz Ljubljane. Raziskovalci so potrebovali več let za povezovanje več deset teleskopov po planetu od Havajev, prek Španije do Antarktike in ob tem izkoristili še vrtenje Zemlje, da jim je naposled uspelo dobiti fotografijo črne luknje. Kakšno novo znanje nam prinaša ta dosežek in kakšni bodo prihodnji izzivi, z nami razmišljata astrofizika dr. Tomaž Zwitter, naš strokovni sodelavec z ljubljanske Fakultete za matematiko in fiziko, in dr. Roman Gold, eden od raziskovalcev pri projektu Event Horizon.


18.04.2019

Julie McEnery: Na NASI lahko izpolniš svoje znanstvene sanje

Julie McEnery je astrofizičarka, že sedemnajst let zaposlena pri NASI, pri kateri je raziskovanje res užitek. “Če imamo zamisel o nekem novem detektorju ali želimo raziskovati določeno črno luknjo na točno določen način, ti vedno nekdo omogoči, da to storiš. Tu lahko res izpolniš vse svoje znanstvene sanje.” Je projektna znanstvenica pri projektu satelit Fermi, ki ob pomoči gama svetlobe raziskuje naše vesolje. Med zvezdami se je znašla povsem po naključju, pravi. “Obiskala sem domače v Dublinu, avtobus na poti proti domu pelje mimo univerze, izstopila sem, si ogledala oddelek za fiziko in vprašala, ali je kakšna možnost, da bi tam študirala. Rekli so da in to je bilo to.” Več o vznemirljivosti opazovanja vesolja, pa tudi občasni dolgočasnosti njenega dela, o ženskah v tehnoloških poklicih in tudi pri NASI, pa o tem, zakaj sta Luna in Sonce enako svetla, če ju opazujemo z gama svetlobo, pove v prispevku. Z njo se je pogovarjala Maja Stepančič.


11.04.2019

Vse živo, epilog: Je človek res krona stvarstva?

V epilogu serije Vse živo danes potujemo od časov Lucy pa do Homo Futurisa, zanimalo nas bo tudi, kaj je tisto, kar ljudi res dela – ljudi. Ljudje smo dolgo veljali za krono stvarstva oziroma krono evolucijskega razvoja. Danes je težko najti lastnosti, po katerih smo posebni. Živali uporabljajo orodja, imajo jezik z dialekti, svojo kulturo … Kaj popolnoma človeškega nam je torej še ostalo? Maja Ratej se je v sklepu serije odpravila na Biotehniško fakulteto v Ljubljani, kjer je potekala tretja javna debata Frekvence X v tej sezoni. Z njo so bili še fiziolog Marko Kreft in antropologinja Petra Golja z Biotehniške fakultete, nevrolog Zvezdan Pirtošek z Nevrološke klinike v Ljubljani in strokovni sodelavec Frekvence X biolog Matjaž Gregorič iz Znanstveno-raziskovalnega centra SAZU.


04.04.2019

Vse živo 5/5: Skrivno življenje rastlin

Bi lahko rastline opisali kot inteligentne? Čeprav rastline na prvi pogled delujejo togo in dolgočasno, so zmožne marsičesa. Lahko se učijo, imajo spomin in so sposobne celo špekulirati, v zadnjih letih ugotavljajo strokovnjaki. V novi epizodi serije Vse živo Frekvence X na piedestal postavljamo skrivno življenje rastlin. Od klepetavih grahov, iznajdljivih plezalk do hitrostnih rekorderk mesojedk. Med drugim nas bo zaneslo tudi v gozd, kjer se v tleh razprostira ogromen širokopasovni gozdni internet, po katerem rastline že milijarde let delijo dobrine, se opozarjajo na nevarnosti in se vedejo celo altruistično. Serijo pripravljata Maja Ratej in dr. Matjaž Gregorič.


28.03.2019

Vse živo 4/5: Tango za dva pajka

V novi epizodi serije Vse živo bomo še prav posebno živalski. Odpravljamo se namreč v svet neverjetno pestrih paritvenih sistemov, ki jih poznajo živali. Od levjih krdel, prešuštniških ptičev, pretkanih škržatov, od ljubezni slepih bahavih petelinov, pajkovk kanibalk pa do ušes zaljubljenih voluharjev, med – recimo jim – napetimi četrtinami pa postrežemo še s prav posebno pajčjo ljubezensko afero. Kako živali izbirajo partnerje in kako močno jih zaznamuje spolni konflikt? Serijo pripravljata Maja Ratej in dr. Matjaž Gregorič.


21.03.2019

Frekvenca X: 10 let rad(i)ovednosti

S tremi urami živega programa smo 19. marca 2019 zaznamovali 10-letnico oddaje in podkasta Frekvenca X. Strnili bomo najzanimivejše utrinke: poslušalke in poslušalci so v živo zastavljali poljudnoznanstvena vprašanja, oglasili so se celo šolarji iz ene izmed učilnic, poklicali smo naše raziskovalce na šest celin, reševali smo izziv o mravljah in slonih, v interpretaciji Ivana Lotriča in Primoža Fleischmana ustvarili Zgodbo Zemlje za glas in klavir. Osrednja gostja Frekvence X je bila legendarna primatologinja in preučevalka šimpanzov Jane Goodall.


19.03.2019

Intervju z Jane Goodall

Kmalu bo natanko 50 let, odkar je Jane Goodall odkrila, da šimpanzi uporabljajo orodje, imajo čustva, svojo osebnost. Znamenita britanska primatologinja bo svoje ugotovitve in izkušnje delila posebej za slavnostno Frekvenco X. Tudi o tem, kako je ime dobila po Tarzanovi Jane in kako je bil kuža Rusty njen največji življenjski učitelj. Kljub 85 letom je še vedno vseskozi na poti, morda kmalu znova obišče tudi Slovenijo. Avtorja: Maja Ratej in Matej Praprotnik


19.03.2019

Delo v mutlikulturnem okolju razširja obzorja

Frekvenca X ne ostaja samo na domačih tleh, veliko kličemo tudi v tujino, dobesedno na vse celine. In tako smo si ob našem desetem rojstnem dnevu rekli: “Kaj ko bi to ponovili, malo bolj zgoščeno, da preverimo, če je Zemlja res okrogla.” In tule je dokaz. Na celine sveta smo poklicali šest naših znanstvenikov. Sogovorniki: Nace Kranjc - London, Velika Britanija, Maruša Žerjal - Canberra, Avstralija, Liza Debevec - Adis Abeba, Etiopija, Jure Dobnikar - Peking, Kitajska, Tina Šantl Temkiv - Antarktika, Ajasja Ljubetič - Seattle, ZDA


14.03.2019

Vse živo 3: Neverjetni mikrobi

So pravi gospodar in stric v ozadju našega planeta mikrobi? Več milijard let so imeli Zemljo sami zase in poganjajo vse ključne procese na Zemlji, celo padavine. Poseljujejo najbolj ekstremne dele planeta, živijo v nas, in to v velikanskih številkah, po eni od teorij naj bi bili prav mikrobi prišleki z drugega planeta. Nič na njih ni mikro, le ime. V tretji epizodi serije Vse živo se s sogovorniki dotikamo nekaterih trenutno najbolj vročih področij raziskovanja mikroorganizmov. Serijo pripravljata Maja Ratej in dr. Matjaž Gregorič.


07.03.2019

Vse živo 2: Rajskega vrta ni več

Na Zemlji poteka šesto veliko izumiranje vrst, ki smo ga povzročili sami. Na planetu naj bi bilo ogroženih 70 odstotkov vseh vrst, v naslednjih 30 letih jih bo izumrla petina. Vsako minuto posekamo, zažgemo ali kako drugače uničimo okrog sto hektarov gozda, prav tako smo že izgubili tri četrtine genetske raznolikosti kulturnih rastlin, ki smo jih sicer nekoč sami vzgojili. Rajskega vrta ni več, opozarjata avtorja druge epizode serije Vse živo dr. Matjaž Gregorič in Maja Ratej.


28.02.2019

Vse živo 1/5: V iskanju zgodbe življenja

Kako staro je življenje na Zemlji? Kdaj se je zgodil tisti trenutek, ko je kemija milijarde let nazaj sredi neprijazne pustinje našega planeta prešla v biologijo? V novi seriji Frekvence X »Vse živo« bomo na sledi življenju na planetu … Odstirali bomo zgodbo o neverjetni raznolikosti, boju, vztrajnosti in fantastični ustvarjalnosti narave okrog nas. In kje v vsem tem je človek, je človek res krona stvarstva?


21.02.2019

Snežak v vesolju

Najprej so domnevali, da ima obliko keglja ali arašida, zdaj so znanstveniki potrdili, da gre pravzaprav za snežaka. Zamrznjeni ostanek iz časa zgodnjega Osončja, poimenovan Ultima Thule, se nahaja kar 6,4 milijarde kilometrov od Zemlje. Gre za najbolj oddaljeno nebesno telo, kar jih človeštvo kadarkoli preučevalo. “Gremo, Nova obzorja!” je na letošnjega novega leta dan zgodaj zjutraj vzkliknil Alan Stern, glavni inženir Nasine sonde New Horizons. Doktor astrofizike in član legendarne zasedbe Queen Brian May pa je zgodovinskem dogodku posvetil prav posebno pesem. Kako astrofiziki razlagajo pojav snežaka v vesolju in kaj bi lahko ugotovili na podlagi pridobljenih podatkov? Gost: dr. Tomaž Zwitter, profesor astrofizike Avtor: Luka Hvalc Foto: Nasa


14.02.2019

150 let periodnega sistema elementov

Legenda pravi, da je ruski znanstvenik Dmitri Mendelejev pred 150 leti idejo zanj dobil v sanjah. Periodni sistem elementov je do danes postal eden najbolj prepoznavnih grafičnih simbolov znanosti. Ob prvi predstavitvi je bilo na njem 61 elementov, danes jih je 118, periodni sistem pa je še vedno povsem enako uporaben. O njegovi zgodovini, odkrivanju novih elementov in tudi o tem, kako se je periodni sistem preselil tudi v popkulturo se v Frekvenci X pogovarjamo z navdušenci, ki periodni sistem nosijo v denarnici, ga imajo odtisnjenega na skodelici ali o njem že celo desetletje snemajo video vsebine. Gosta: Dr. Martyn Poliakoff, Univerza v Nottinghamu (VB); Dr. Iztok Turel, ljubljanska Fakulteta za kemijo in kemijsko tehnologijo Avtorja oddaje: Jan Grilc in dr. Matej Huš


07.02.2019

Dr Prihodnost 5/5: Pogodba za večno življenje

Ljudje od nekdaj iščemo eliksir večne mladosti, ki bi nam zagotovil večno življenje. Če je bogovom to izredno dobro uspevalo, pa so ljudje ostali večni le v svojih dejanjih in na papirju. Morda pa se bo tudi to kmalu spremenilo. V 21. stoletju kot naslednjo veliko tehnologijo napovedujejo ravno podaljšanje človekovega življenja v večnost. Kakšen pa bi bil svet, če bi vsi živeli večno? Kako bi na svetu preživela preštevilna populacija, kje bi živela, kdo bi jo prehranil? Je večno življenje zidanje gradov v oblakih ali realna možnost? Nekaj odgovorov smo poiskali na novogoriški gimnaziji. Sogovorniki: profesor filozofije Sandi Cvek doktorska študentka biomedicine Mojca Justin upokojenka Marija Jelen dijaki Gimnazije Nova Gorica – Anja, Borja in Klemen soustanoviteljica podjetja za krioniko Alcor Linda Chamberlain dr. Zvonka Zupanič Slavec, Inštitut za zgodovino medicine Serijo Frekvence X Ordinacija dr. Prihodnost je pripravila Maja Stepančič.


31.01.2019

Dr. Prihodnost 4/5: Bolezni iz kovčka

Vsak dan z letalom potuje 11 milijonov ljudi, to je toliko, kot ima prebivalcev Grčija. Pomislimo, koliko vrst bolezni bi nosili in delili po svetu, če bi potovali neodgovorno. Lani je na letalu iz Dubaja v New York zavladala panika, kašljajo in bruhalo je kar sto ljudi. Po pristanku so jih zadržali v karanteni in pregledali na letalu, na srečo jih je zares zbolelo le 11. In to ne za kakšno eksotično boleznijo, ampak za gripo. Naš sogovornik je v kovčku z rajske plaže v Venezueli v Slovenijo prinesel mušice puri-puri. Ko je doma odprl kovček, so mušice zletele iz kovčka. Kaj bi se zgodilo, če bi bile okužene? Bolezni pa ne prinašamo samo domov, ampak jih tudi odnašamo v druge kraje. Že britanski raziskovalec James Cook je s svojo posadko leta 1778 na Havaje prinesel gripo, tuberkulozo, sifilis … In z njimi smrt za številne avtohtone prebivalce.Raziskujemo izzive, ki jih za naše zdravje prinašata sodoben način življenja in mobilnost. Kaj za razvoj starih in novih bolezni pomenijo hitre podnebne spremembe, kako lahko z genetskimi manipulacijami (na primer malaričnega komarja) uničimo nalezljive bolezni in kakšne so lahko posledice za naš ekosistem. Že če recimo iz Indonezije prinesete odmrle korale ali na domačem vrtu posadite semena manga iz Tajske, lahko ob slabem scenariju to pomeni, da ste domov prinesli tudi virusno, bakterijsko ali glivično okužbo, ki se lahko v našem okolju tudi razmnoži. Bo čez 30 let gensko spreminjanje organizmov nekaj popolnoma vsakdanjega? Ali morda bolezni sploh ne bomo več zdravili, ampak jih bomo iztrebili, še preden bi lahko preskočile na človeka? Kako bo z epidemijami? Kaj bo prinesel morebitni razmah vesoljskega turizma? Sogovorniki: -Dr. Tadeja Kotar, Sekcija za tropsko in potovalno medicino UKC Ljubljana -Dr. Tadej Malovrh, imunolog in strokovnjak za biovarnost z Veterinarske fakultete -Mojca Dolinar, klimatologinja na ARSO -Dr. Andrew Hammond, mikrobiolog na Imperial College London Serijo Ordinacija Dr. Prihodnost pripravlja Maja Stepančič.


24.01.2019

Dr. Prihodnost 3/5: Izzivi staranja

Do leta 2050 bo kar 35 odstotkov prebivalcev v Evropi starejših od 60 let, na svetu bo takrat živelo že več starostnikov kot otrok in mladostnikov. Staranje poteka zelo različno, nekdo je lahko še pri osemdesetih povsem aktiven in se primerja z zdravim tridesetletnikom. Na drugi strani imajo lahko že šestdesetletniki resne starostne težave. Za celično in telesno staranje velja, da gre pravzaprav za akumulacijo poškodb. Te težko nadziramo, medtem ko lahko imamo na primer poškodbe DNK vsaj delno pod kontrolo, recimo tako, da ne kadimo. Tudi možgane lahko v starosti ohranimo v dobri formi. Iščemo odgovore na izzive staranja: kako uspešno preprečevati visok krvni tlak v mladosti, da zaradi njega ne bo težav v starosti, kako lahko tehnologija pomaga pri okrevanju – denimo po možganski kapi, kakšne odgovore na staranje ponuja nevroznanost. Katere tehnološke in vsakodnevne malenkosti lahko človeku izboljšajo kakovost v starosti. V domu starejših v Šiški se srečamo z nekaj stanovalkami, mnoge so že na pragu devetdesetih. Navkljub napredujoči tehnologiji so prepričane, da toplega stiska roke in iskrenega nasmeška ne bo mogel nikoli nadomestiti robot. Pa imamo za naš planet starcev sploh kakšno resno alternativo? Sogovorniki so: sistemski biolog dr. Anže Županič dr. Maja Bresjanac, nevrobiologinja delovna terapevtka Katarina Galof dr. Jana Brguljan Hitij, vodja oddelka za hipertenzijo UKC Ljubljana vodja službe za raziskave in razvoj URI Soča dr. Zlatko Matjačić dr. Alan Antin, podjetje za raziskave tehnologij Gartner Serijo Frekvence X Ordinacija dr. Prihodnost pripravlja Maja Stepančič.


17.01.2019

Dr. Prihodnost 2/5: Krasni novi svet genetike

Aldous Huxley je že pred osemdesetimi leti v kultnem delu Krasni novi svet brez potrebnih tehnologij predvidel človekov vpliv na genski zapis. Branje, ki lahko sproža tudi nelagodje, je danes nujno za vnovično izpraševanje, kakšna družba postajamo. Bomo tako kot v knjigi vsi isti, a ne vsi enakopravni? So strahovi pred zlorabo genetike za ustvarjanje ljudi po meri realni ali pretirani? Na matematično in etično polje prihodnosti v 2. delu serije postavljamo gensko terapijo, celično terapijo, nanorobote in tehnologijo CRISPR. Izzive sodobne genetike nam predstavljajo: - dr. Roman Jerala - dr. Lenart Girandon - dr. Maja Čemažar Pri seciranju človeškega genoma nam pomaga strokovni sodelavec dr. Aleš Maver s kliničnega inštituta za medicinsko genetiko UKC Ljubljana, ki pravi, da je raziskovanje genoma razburljivo in da gre v resnici za detektivsko delo: v veliki knjižnici skušajo prepoznati ključne spremembe, ki povzročajo bolezni. Serijo Ordinacija dr. Prihodnost pripravlja Maja Stepančič. Dobrodošli v krasnem novem svetu genetike. In etike.


Stran 12 od 34
Prijavite se na e-novice

Prijavite se na e-novice

Neveljaven email naslov